
Proactive Defense for Evolving Cyber Threats

Richard Colbaugh
Sandia National Laboratories

New Mexico Institute of Mining and Technology
Albuquerque, NM USA
colbaugh@comcast.net

Kristin Glass
New Mexico Institute of Mining and Technology

Socorro, NM USA
kglass@icasa.nmt.edu

Abstract—There is significant interest to develop proactive ap-
proaches to cyber defense, in which future attack strategies are
anticipated and these insights are incorporated into defense de-
signs. This paper considers the problem of protecting computer
networks against intrusions and other attacks, and leverages the
coevolutionary relationship between attackers and defenders to
derive two new methods for proactive network defense. The first
method is a bipartite graph-based machine learning algorithm
which enables information concerning previous attacks to be
“transferred” for application against novel attacks, thereby sub-
stantially increasing the rate with which defense systems can suc-
cessfully respond to new attacks. The second approach involves
exploiting basic threat information (e.g., from cyber security ana-
lysts) to generate “synthetic” attack data for use in training de-
fense systems, resulting in networks defenses that are effective
against both current and (near) future attacks. The utility of the
proposed methods is demonstrated by showing that they outper-
form standard techniques for the task of detecting malicious net-
work activity in two publicly-available cyber datasets.

Keywords—-cyber security, proactive defense, predictive analysis,
machine learning, security informatics.

I. INTRODUCTION

Rapidly advancing technologies and evolving operational prac-
tices and requirements increasingly drive both private and pub-
lic sector enterprises toward highly interconnected and techno-
logically convergent information networks. Proprietary infor-
mation processing solutions and stove-piped databases are giv-
ing way to unified, integrated systems, thereby dramatically
increasing the potential impact of even a single well-planned
network intrusion, data theft, or denial-of-service attack. It is
therefore essential that commercial and government organiza-
tions develop network defenses which are able to respond rap-
idly to, or even foresee, new attack strategies and tactics.

Recognizing these trends and challenges, some cyber secu-
rity researchers and practitioners are focusing their efforts on
developing proactive methods of cyber defense, in which fu-
ture attack strategies are anticipated and these insights are in-
corporated into defense designs [e.g., 1-5]. However, despite
this attention, much remains to be done to place the objective
of proactive defense on a rigorous and quantitative foundation.
Fundamental issues associated with the dynamics and predict-
ability of the coevolutionary “arms race” between attackers and
defenders have yet to be resolved. For instance, although recent
work has demonstrated that previous attacker actions and de-
fender responses provide predictive information about future

attacker behavior [3-5], not much is known about which meas-
urables have predictive power or how to exploit these to form
useful predictions. Moreover, even if these predictability and
prediction issues were resolved, it is still an open question how
to incorporate such predictive analytics into the design of prac-
tically-useful cyber defense systems.

This paper considers the problem of protecting enterprise-
scale computer networks against intrusions and other attacks,
and explicitly leverages the coevolutionary relationship be-
tween attackers and defenders to develop two new methods for
proactive network defense. Each method formulates the task as
one of behavior classification, in which innocent and malicious
network activities are to be distinguished, and each assumes
that only very limited prior information is available regarding
exemplar attacks or attack attributes. The first method models
the data as a bipartite graph of instances of network activities
and the features or attributes that characterize these instances.
The bipartite graph data model is used to derive a machine
learning algorithm which accurately classifies a given instance
as either innocent or malicious based upon its behavioral fea-
tures. The algorithm enables information concerning previous
attacks to be “transferred” for use against novel attacks; cru-
cially, it is assumed that previous attacks are drawn from a dis-
tribution of attack instances which is related but not identical to
that associated with the new malicious behaviors. This transfer
learning algorithm provides a simple, effective way to extrapo-
late attacker behavior into the future, and thus significantly
increases the rate with which defense systems can successfully
respond to new attacks.

The second approach to proactive network defense pro-
posed in this paper represents attacker-defender coevolution as
a hybrid dynamical system (HDS) [6,7], with the HDS discrete
system modeling the “modes” of attack (e.g., a particular class
of DoS or data exfiltration procedures) and the HDS continu-
ous system generating particular attack instances corresponding
to the attack mode presently “active”. Our algorithm takes as
input the mode of attack, obtained for example from the in-
sights of cyber analysts, and generates synthetic attack data for
this mode of malicious activity; these data are then combined
with actually observed attacks to train a learning-based classi-
fier to be effective against both current and (near) future at-
tacks. The utility of the proposed methods is demonstrated by
showing that they outperform standard techniques for the task
of distinguishing innocent and malicious network behaviors in
analyses of two publicly-available cyber datasets.

SAND2011-2445C

II. PRELIMINARIES

We approach the task of protecting computer networks from
attack as a classification problem, in which the objective is to
distinguish innocent and malicious network activity. Each in-
stance of network activity is represented as a feature vector
x|F|, where entry xi of x is the value of feature i for instance
x and F is the set of instance features or attributes of interest (x
may be normalized in various ways [7]). Instances can belong
to one of two classes: positive / innocent and negative / mali-
cious; generalizing to more than two classes is straightforward.
We wish to learn a vector c|F| such that the classifier orient
 sign(cTx) accurately estimates the class label of behavior x,
returning 1 (1) for innocent (malicious) activity.

Knowledge-based classifiers leverage prior domain infor-
mation to construct the vector c. One way to obtain such a clas-
sifier is to assemble a “lexicon” of positive / innocent features
FF and malicious / negative features FF, and to set ci 1
if feature i belongs to F, ci 1 if i is in F, and ci0 otherwise;
this classifier simply sums the positive and negative feature
values in the instance and assigns instance class accordingly.
Unfortunately this sort of scheme is unable to improve its per-
formance or adapt to new domains, and consequently is usually
not very useful in cyber security applications.

Alternatively, learning-based methods attempt to generate
the classifier vector c from examples of positive and negative
network activity. To obtain a learning-based classifier, one can
begin by assembling a set of nl labeled instances {(xi, di)},
where di{1, 1} is the class label for instance i. The vector c
is then learned through training with the set {(xi, di)}, for ex-
ample by solving the following set of equations for c:

 [XTX  I|F|] c  XT d, (1)

where matrix Xnl|F| has instance feature vectors for rows,
dnl is the vector of instance labels, I|F| denotes the |F||F|
identity matrix, and 0 is a constant; this corresponds to regu-
larized least squares (RLS) learning [8]. Many other learning
strategies can be used to compute c [8]. Learning-based classi-
fiers have the potential to improve their performance and adapt
to new situations, but realizing these capabilities typically re-
quires that large training sets of labeled attacks be obtained.
This latter characteristic represents a significant drawback for
cyber security applications, where it is desirable to be able to
recognize new attacks given only a few (or no) examples.

In what follows we present two new learning-based ap-
proaches to cyber defense which are able to perform well with
only very modest levels of prior knowledge regarding the at-
tack classes of interest. The basic idea is to leverage “auxiliary”
information which is readily available in cyber security appli-
cations. More specifically, the first proposed method is a trans-
fer learning algorithm [e.g., 9] which permits the knowledge
present in data on previous attacks to be transferred for imple-
mentation against new attacks. The second approach uses prior
knowledge concerning attack “modes” to generate synthetic
attack data for use in training defense systems, resulting in
networks defenses which are effective against both current and
(near) future attacks.

III. METHOD ONE: TRANSFER LEARNING

In this section we first derive a bipartite graph-based transfer
learning algorithm for distinguishing innocent and malicious
network behaviors, and then demonstrate the algorithm’s ef-
fectiveness through a case study using publicly-available net-
work intrusion data obtained from the KDD Cup archive [10].
The basic hypothesis is simple and natural: because attacker /
defender behavior coevolves, previous activity should provide
some indication of future behavior, and transfer learning is one
way to quantify and operationalizes this intuition.

A. Proposed Algorithm

The development of the proposed algorithm begins by mod-
eling the problem data as a bipartite graph Gb, in which in-
stances of network activity are connected to their features (see
Figure 1). It is easy to see that the adjacency matrix A for graph
Gb is given by











0X

X0
A T

 (2)

where matrix Xn|F| is constructed by stacking the n instance
feature vectors as rows, and each ‘0’ is a matrix of zeros. In the
proposed algorithm, integration of labeled and “auxiliary” data
is accomplished by exploiting the relationships between in-
stances and features encoded in the bipartite graph model. The
basic idea is to assume that, in Gb, positive / negative instances
will tend to be connected to positive / negative features. Note
that, as shown below, the learning algorithm can incorporate a
lexicon of labeled features (if available). It is assumed that this
lexicon is used to build vector w|F|, where the entries of w
are set to 1 (innocent), 1 (malicious), or 0 (unknown) ac-
cording to the polarity of the corresponding features.

Many cyber security applications are characterized by the
presence of limited labeled data for the attack class of interest
but ample labeled information for a related class of malicious
activity. For example, an analyst may be interested in detecting
a new class of attacks, and may have in hand a large set of la-

instances

features

instances

features

Figure 1. Cartoon of bipartite graph model Gb, in which the
instances of network activity (red vertices) are connected to
features (blue vertices) they contain, and link weights (black
edges) reflect the magnitudes taken by the features in the asso-
ciated instances.

beled examples of normal network behavior as well as attacks
which have been experienced in the recent past. In this setting
it is natural to adopt a transfer learning approach, in which
knowledge concerning previously observed instances of inno-
cent / malicious behavior, the so-called source data, is trans-
ferred to permit classification of new target data. In what fol-
lows we present a new bipartite graph-based approach to trans-
fer learning that is well-suited to cyber defense applications.

Assume that the initial problem data consists of a collection
of n = nT  nS network events, where nT is the (small) number
of labeled instances available for the target domain, that is,
examples of network activity of current interest, and nS  nT is
the number of labeled instances from some related source do-
main, say reflecting recent activity; suppose also that a modest
lexicon Fl of labeled features is known (this set can be empty).
Let this label data be used to encode vectors dTnT, dSnS,
and w|F|, respectively. Denote by dT,estnT, dS,estnS, and
c|F| the vectors of estimated class labels for the target and
source instances and the features, and define the augmented
classifier caug  [dS,est

T dT,est
T cT]T  n|F|. Note that the quan-

tity caug is introduced for notational convenience in the subse-
quent development and is not directly employed for classifica-
tion.

We derive an algorithm for learning caug, and therefore c, by
solving an optimization problem involving the labeled source
and target training data, and then use c to estimate the class
label of any new instance of network activity via the simple
linear classifier orient  sign(cTx). This classifier is referred to
as transfer learning-based because c is learned, in part, by
transferring knowledge about the way innocent and malicious
network behavior is manifested in a domain which is related to
(but need not be identical to) the domain of interest.

We wish to learn an augmented classifier caug with the fol-
lowing four properties: 1.) if a source instance is labeled, then
the corresponding entry of dS,est should be close to this 1 label;
2.) if a target instance is labeled, then the corresponding entry
of dT,est should be close to this 1 label, and the information
encoded in dT should be emphasized relative to that in the
source labels dS,; 3.) if a feature is in the lexicon Fl, then the
corresponding entry of c should be close to this 1 label; and
4.) if there is an edge Xij of Gb which connects an instance i and
a feature j, and Xij possesses significant weight, then the esti-
mated class labels for i and j should be similar.

The four objectives listed above may be realized by solving
the following minimization problem:

2

3

2

TTestT,2

2

SSestS,1aug
T
aug

augc

 w- c

dk - d dk - d Lcc min









(3)

where L  D  A is the graph Laplacian matrix for Gb, with D
the diagonal degree matrix for A (i.e., Dii  j Aij), and 1, 2,
3, kS, and kT are nonnegative constants. Minimizing (3) en-
forces the four properties we seek for caug. More specifically,
the second, third, and fourth terms penalize “errors” in the first
three properties, and choosing 2  1 and kT  kS favors target

label data over source labels. To see that the first term enforces
the fourth property, note that this expression is a sum of com-
ponents of the form Xij (dT,est,i  cj)

2 and Xij (dS,est,i  cj)
2. The

constants 1, 2, 3 can be used to balance the relative impor-
tance of the four properties.

The caug which minimizes the objective function (3) can be
obtained by solving the following set of linear equations:







































w

dk

dk

c

ILLL

LILL

LLIL

3

TT2

SS1

aug

F3333231

23nT22221

1312nS111










(4)

where the Lij are matrix blocks of L of appropriate dimension.
The system (4) is sparse because the data matrix X is sparse,
and therefore large-scale problems can be solved efficiently.
Note that in situations where the set of available labeled in-
stances and features is very limited, classifier performance can
be improved by replacing L in (4) with the normalized Lapla-
cian LnD1/2LD1/2, or with a power of this matrix Ln

k (for k a
positive integer).

We summarize the above discussion by sketching an algo-
rithm for constructing the proposed transfer learning classifier:

Algorithm TL:

1. Assemble the set of equations (4), possibly by replacing
the graph Laplacian L with Ln

k.

2. Solve equations (4) for caug  [dS,est
T dT,est

T cT]T (for in-
stance using the Conjugate Gradient method).

3. Estimate the class label (innocent or malicious) of any new
activity x of interest as: orient  sign(cTx).

B. Algorithm Evaluation

We now examine the performance of Algorithm TL for the
problem of distinguishing innocent and malicious network ac-
tivity in the KDD Cup 99 dataset, a publicly-available collec-
tion of network data consisting of both normal activities and
attacks of various kinds [10]. For this study we randomly se-
lected 1000 Normal connections (N), 1000 denial-of-service
attacks (DoS), and 1000 unauthorized remote-access events
(R2L) to serve as our test data. Additionally, small sets of each
of these classes of activity were chosen at random from [10] to
be used for training Algorithm TL, and a lexicon of four fea-
tures, two positive and two negative, was constructed manually
and employed to form the lexicon vector w.

We defined two tasks with which to explore the utility of
Algorithm TL. In the first, the goal is to distinguish N and DoS
instances, and it is assumed that the following data is available
to train Algorithm TL: 1.) a set of dS/2 labeled N and dS/2 la-
beled R2L instances (source data), 2.) a set of dT/2 labeled N
and dT/2 labeled DoS instances (target data), and 3.) the four
lexicon features. Thus the source domain consists of N and
R2L activities and the target domain is composed of N and
DoS instances. In the second task the situation is reversed – the
objective is to distinguish N and R2L activities, the source do-
main is made up of dS (total) labeled N and DoS instances, and

the target domain consists of dT (total) N and R2L instances. In
all tests the number of labeled source instances is dS  50,
while the number of target instances dT is varied to explore the
way classifier performance depends on this key parameter. Of
particular interest is determining if it is possible to obtain good
performance with only limited target data, as this outcome
would suggest both that useful information concerning a given
attack class is present in other attacks and that Algorithm TL is
able to extract this information.

This study compared the classification accuracy of Algo-
rithm TL with that of a well-tuned version of the RLS algo-
rithm (1) and a standard naïve Bayes (NB) algorithm [11]; as
the performance of the RLS and NB methods were quite simi-
lar, we report only the RLS results. Algorithm TL is imple-
mented with the following parameter values: 1  1.0, 2  3.0,
3  5.0, kS  0.5, kT  1.0, and k  5. We examined training
sets which incorporated the following numbers of target in-
stances: nT  2, 5, 10, 20, 30, 40, 50, 60. As in previous studies
(see, for example, [10]), only the 34 “continuous features” were
used for learning the classifiers.

Sample results from this study are depicted in Figure 2.
Each data point in the plots represents the average of 100 trials.
It can be seen that Algorithm TL outperforms the RLS classi-
fier (and also the standard NB algorithm), and that the differ-
ence in accuracy of the methods increases substantially as the
volume of training data from the target domain becomes small.
The performance of Algorithm TL for this task is also superior
to that reported for other learning methods tested on these data
[e.g., 12]. The ability of Algorithm TL to accurately identify a
novel attack after seeing only a very few examples of it, which
is a direct consequence of its ability to transfer useful knowl-
edge from related data, is expected to be of considerable value
for a range of cyber security applications.

Finally, it is interesting to observe that the bipartite graph
formulation of Algorithm TL permits useful information to be
extracted from network data even if no labeled instances are
available. More specifically, we repeated the above study for
the case in which dT  dS  0, that is, when no labeled instances
are available in either the target or source domains. The knowl-
edge reflected in the lexicon vector w is still made available to
Algorithm TL. As shown in Figure 3, employing a “lexicon
only” classifier, as described in Section II, yields classification
accuracy which is not much better than the 50 baseline
achievable with random guessing. However, using this lexicon
information together with Algorithm TL enables useful classi-
fication accuracy to be obtained (see Figure 3). This somewhat
surprising result can be explained as follows: the “clustering”
property of Algorithm TL encoded in objective function (3)
allows the domain knowledge in the lexicon to leverage latent
information present in the unlabeled target and source in-
stances, thereby boosting classifier accuracy.

IV. METHOD TWO: SYNTHETIC ATTACK GENERATION

In this section we derive our second algorithm for distinguish-
ing normal and malicious network activity and demonstrate its
effectiveness through a case study using the publicly-available
Ling-Spam dataset [13]. Again the intuition is that attacker /
defender coevolution should make previous activity somewhat
indicative of future behavior, and in the present case we ex-
ploit this notion by generating “predicted” attack data and us-
ing this synthetic data for classifier training.

A. Proposed Algorithm

The development of the second approach to proactive de-
fense begins by modeling attacker / defender interaction as a
stochastic hybrid dynamical system (S-HDS). Here we present
a brief, intuitive overview of the basic idea; a comprehensive
description of the modeling procedure is detailed in [7]. An S-
HDS (see Figure 4) is a feedback interconnection of a discrete-
state stochastic process, such as a Markov chain, with a family

Figure 2. Performance of Algorithm TL with limited labeled
data. The plot shows how classifier accuracy (vertical axis)
varies with number of available labeled target instances (hori-
zontal axis) for four tasks: distinguish N and DoS using RLS
classifier (blue), distinguish N and DoS using Algorithm TL
(red), distinguish N and R2L using RLS classifier (black), and
distinguish N and R2L using Algorithm TL (magenta),

Figure 3. Performance of Algorithm TL with no labeled in-
stance data. The bar graphs depicts classifier accuracy for four
tasks: distinguish N and DoS using a lexicon-only (LO) classi-
fier (left, blue bar), distinguish N and DoS using lexicon-
learning (LL) via Algorithm TL (left, red bar), distinguish N
and R2L using an LO classifier (right, blue bar), and distin-
guish N and R2L using LL via Algorithm TL (right, red bar).

of continuous-state stochastic dynamical systems [6,14]. Com-
bining discrete and continuous dynamics within a unified,
computationally tractable framework offers an expressive,
scalable modeling environment that is amenable to formal
mathematical analysis. In particular, S-HDS models can be
used to efficiently represent dynamical phenomena which
evolve on a broad range of time scales, a property of consider-
able value in the present application [14].

As a simple illustration of the way the S-HDS formalism
enables effective, efficient mathematical representation of cy-
ber phenomena, consider the task of modeling the coevolution
of Spam attack methods and Spam filters. At an abstract but
still useful level, one can think of Spam-Spam filter dynamics
as evolving on two timescales:

 the slow timescale, which captures the evolution of attack
strategies; as an example, consider the way early Spam fil-
ters learned to detect Spam by identifying words that were
consistently associated with Spam, and how Spammers re-
sponded by systematically modifying the wording of their
messages, for instance via “add-word” (AW) and “syno-
nym” attacks [15];

 the fast timescale, which corresponds to the generation of
particular attack instances for a given “mode” of attack
(for example, the synthesis of Spam messages according to
a specific AW attack method).

We show in [7] that a range of adversarial behavior can be rep-
resented within the S-HDS framework, and derive simple but
reasonable models for Spam-Spam filter dynamics and for ba-
sic classes of network intrusion attacks.

In [14] we develop a mathematically-rigorous procedure for
predictive analysis for general classes of S-HDS. Among other
capabilities, this analytic methodology enables the predictabil-
ity of a given dynamics to be assessed and the predictive meas-
urables (if any) to be identified. Applying this predictability
assessment process to the adversarial S-HDS models con-
structed in [7] reveals that, for many such systems, the most
predictive measurable is the mode of attack, that is, the state
variable for the discrete system component of the S-HDS (see
[7] for a detailed description of this analysis). Observe that this
result is intuitively sensible.

This analytic finding suggests the following synthetic data
learning (SDL) approach to proactive defense. First, identify
the mode(s) of attack of interest. For attacks which are already
underway, [7] offers an S-HDS discrete-system state estimation
method that allows the mode to inferred using only modest
amounts of measured data. Alternatively, and of more interest
in the present application, it is often possible to identify likely
future attack modes through analysis of auxiliary information
sources (e.g., the subject matter knowledge possessed by do-
main experts or “non-cyber” data such as that found in social
media [16,17]).

Once a candidate attack mode has been identified, synthetic
attack data corresponding to the mode can be generated by em-
ploying one of the S-HDS models derived in [7]. The synthetic
data take the form of a set of K network attack instance vectors,
denoted AS  {xS1, …, xSK}. The set AS can then be combined
with (actual) measurements of L normal network activity in-
stances, NM  {xNM1, …, xNML}, and P (recently) observed at-
tacks, AM  {xM1, …, xMP}, yielding the training dataset TR 
NM  AM  AS of real and synthetic data. It is hypothesized
that training classifiers with the augmented set TR may offer a
mechanism for deriving defenses which are effective against
both current and near future malicious activity.

We summarize the above discussion by sketching a proce-
dure for constructing the new SDL classifier:

Algorithm SDL:

1. Identify the mode(s) of attack of interest (e.g., via domain
experts or auxiliary data).

2. Generate a set of synthetic attack instances AS correspond-
ing to the attack mode identified in Step 1.

3. Assemble sets of normal network activity N and measured
attack activity AM for the network under study.

4. Train a classifier (e.g., RLS, NB) using the training data
TR  NM  AM  AS. Estimate the class label (innocent or
malicious) of any network activity x with the formula: ori-
ent(x)  sign(cTx).

B. Algorithm Evaluation

We now examine the performance of Algorithm SDL for
the problem of distinguishing legitimate and Spam emails in
the Ling-Spam dataset [13], a corpus of 2412 non-Spam emails
collected from a linguistics mailing list and 481 Spam emails
received by the list. After data cleaning and random sub-
sampling of the non-Spam messages we are left with 468 Spam
and 526 non-Spam messages for training and testing purposes;
this set of 994 emails will be referred to as the nominal Spam
corpus. (Note that all email was preprocessed using the ifile
tool [18].)

We considered three scenarios in this study:

1. NB classifier / nominal Spam: for each of ten runs, the
nominal Spam corpus was randomly divided into equal-
sized training and testing sets and the class label for each
message in the test set was estimated with a trained naïve
Bayes (NB) algorithm [11];

Figure 4. Schematic of basic S-HDS feedback structure.
The discrete and continuous systems in this framework
model the selection of attack “mode” and resulting adver-
sary behavior, respectively, which arise from the coevol-
ving attacker-defender dynamics.

discrete
system

continuous
system

inputs

inputs

mode
outputs

discrete
system

continuous
system

inputs

inputs

mode
outputs

discrete
system

continuous
system

inputs

inputs

mode
outputs

2. NB classifier / nominal plus attack Spam: for each of ten
runs, the nominal Spam corpus was randomly divided into
equal-sized training and testing sets and the test set was
then augmented with 263 additional non-Spam messages
(taken from the Ling-Spam dataset) and 234 Spam mes-
sages generated via a standard add-word (AW) attack
methodology [15]; the class labels for the test messages
were estimated with the NB algorithm [11] trained on the
nominal Spam training set;

3. Algorithm SDL / nominal plus attack Spam: for each of
ten runs, the training and test corpora were constructed ex-
actly as in Scenario 2 and the class labels for the test mes-
sages were estimated with Algorithm SDL.

In generating the AW attacks in Scenarios 2. and 3., we assume
that the attacker knows to construct AW Spam to defeat an NB
filter but does not have knowledge of the specific filter in-
volved [15]. Analogously, the synthetic AW attacks generated
in Scenario 3 (using Step 2 of Algorithm SDL) are computed
with no knowledge of the attacker’s methodology beyond the
mode of attack (i.e., AW).

Sample results from this study are displayed in Figure 5. In
each case the “confusion matrix” [8] reports the (rounded) av-
erage performance over the ten runs. It can be seen that, as ex-
pected, the NB filter does well against the nominal Spam but
poorly against the AW Spam (in fact, the NB filter does not
detect a single instance of AW Spam). In contrast, Algorithm

SDL performs well against both nominal Spam and AW Spam,
achieving ~96 classification accuracy with a low false posi-
tive rate. It is emphasized that this result is obtained using only
the (synthetic) estimate of AW Spam generated in Step 2 of
Algorithm SDL.

ACKNOWLEDGEMENTS

This work was supported by the Laboratory Directed Research
and Development Program at Sandia National Laboratories.
We thank Chip Willard of the U.S. Department of Defense for
numerous helpful discussions on aspects of this research.

REFERENCES
[1] Byers, S. and S. Yang, “Real-time fusion and projection of

network intrusion activity”, Proc. ISIF/IEEE Intern. Conference
on Information Fusion, Cologne, Germany, July 2008.

[2] Armstrong, R., J. Mayo, and F. Siebenlist, “Complexity science
challenges in cybersecurity”, Sandia National Laboratories
SAND Report, March 2009.

[3] Colbaugh, R., “Does coevolution in malware adaptation enable
predictive analysis?”, IFA Workshop: Exploring Malware
Adaptation Patterns, San Francisco, CA, May 2010.

[4] Mashevsky, Y., Y. Namestnikov, N. Denishchenko, and P.
Zelensky, “Method and system for detection and prediction of
computer virus-related epidemics”, US Patent 7,743,419, June
2010.

[5] Bozorgi, M., L. Saul, S. Savage, and G. Voelker, “Beyond
heuristics: Learning to classify vulnerabilities and predict
exploits”, Proc. ACM SIGKDD Conference, Washington DC,
July 2010.

[6] Majumdar, R. and P. Tabuada, Hybrid Systems: Computation
and Control, LNCS 5469, Springer, Berlin, 2009.

[7] Colbaugh, R. and K. Glass, “Proactive defense for evolving
cyber threats”, Sandia National Laboratories SAND Report,
March 2011.

[8] Hastie, T., R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Second Edition, Springer, New York, 2009.

[9] Pan, S. and Q. Yang, “A survey on transfer learning”, IEEE
Trans. Knowledge and Data Engineering, Vol. 22, pp. 1345-
1359, 2010.

[10] http://kdd.ics.uci.edu/databases/kddcup99/; accessed Dec. 2010.
[11] http://www.borgelt.net/bayes.html; accessed July 2010.
[12] He, J., Y. Liu, and R. Lawrence, “Graph-based transfer

learning”, Proc. 18th ACM Conference on Information and
Knowledge Management, Hong Kong, November 2009.

[13] http://labs-repos.iit.demokritos.gr/skel/i-config/downloads/;
accessed July 2010.

[14] Colbaugh, R. and K. Glass, “Predictive analysis for dynamical
processes I: Multi-scale hybrid system modeling, and II:
Predictability and warning analysis”, Proc. 2009 IEEE Intern.
Multi-Conference on Systems and Control, Saint Petersburg,
Russia, July 2009.

[15] Lowd, D. and C. Meeks, “Good word attacks on statistical Spam
filters”, Proc. Second Conference on Email and Anti-Spam, Palo
Alto, CA, July 2005.

[16] Cao, L., P. Yu, C. Zhang, H. Zhang, F. Tsai, and K. Chan, “Blog
data mining for cyber security threats”, Data Mining for
Business Applications, Springer US, 2009.

[17] Colbaugh, R. and K. Glass, “Emerging topic detection for busi-
ness intelligence via predictive analysis of ‘meme’ dynamics”,
Proc. AAAI 2011 Spring Symposium, Palo Alto, CA, March
2011.

[18] http://www.nongnu.org/ifile/; accessed July 2010.

Figure 5. Performance of Algorithm SDL on Spam dataset.
Each confusion matrix shows number of non-Spam mes-
sages classified as non-Spam and Spam (left column) and
number of Spam messages classified as non-Spam and
Spam (right column). The three matrices, from top to bot-
tom, report the results for: NB against nominal Spam, NB
against Spam which contains add-word attacks, and Algo-
rithm SDL against Spam which contains add-word attacks.

Algorithm SDL: Nominal and Attack Spam

class\truth non-Spam Spam

non-Spam 524 40
Spam 2 428

NB Algorithm: Nominal and Attack Spam

class\truth non-Spam Spam

non-Spam 524 253
Spam 2 215

NB Algorithm: Nominal Spam

class\truth non-Spam Spam

non-Spam 262 19
Spam 1 215

Algorithm SDL: Nominal and Attack Spam

class\truth non-Spam Spam

non-Spam 524 40
Spam 2 428

NB Algorithm: Nominal and Attack Spam

class\truth non-Spam Spam

non-Spam 524 253
Spam 2 215

NB Algorithm: Nominal Spam

class\truth non-Spam Spam

non-Spam 262 19
Spam 1 215

