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ABSTRACT

The only proven method for performing distributed-memory paral-
lel rendering at large scales, tens of thousands of nodes, is a class of
algorithms called sort last. The fundamental operation of sort-last
parallel rendering is an image composite, which combines a collec-
tion of images generated independently on each node into a single
blended image. Over the years numerous image compositing al-
gorithms have been proposed as well as several enhancements and
rendering modes to these core algorithms. However, the testing of
these image compositing algorithms has been with an arbitrary set
of enhancements, if any are applied at all. In this paper we take
a leading production-quality image-compositing framework, IceT,
and use it as a testing framework for the leading image composit-
ing algorithms of today. The compositing enhancements provided
by IceT, including some introduced in this paper, are employed in
our measurements. IceT also provides different compositing mech-
anisms for different rendering environments such as opaque surface
versus volume rendering and fixed point versus floating point color
representations. These variations are also considered in our anal-
ysis. To understand the behavior of these algorithms at vary large
scale, we run tests on up to 64K cores of the Intrepid BlueGene/P
at Argonne National Laboratories.

Index Terms: [.3.1 [Computer Graphics]: Hardware

Architecture—Parallel processing

1 INTRODUCTION

The demands of parallel rendering continue to grow as visualiza-
tion is applied to ever larger scientific data. Early efforts have satis-
fied the need of parallel rendering on specialized visualization clus-
ters containing hundreds of nodes. Because of recent constraints in
building specialized visualization clusters [4], recent research fo-
cuses on performing visualization directly on the same supercom-
puting architectures driving simulation. Whereas previous research
considers rendering on the order of hundreds of processes, recent
efforts use over ten thousand processes [5]. Furthermore, in an at-
tempted to get around bottlenecks introduced by file I/O, it is now
more commonplace to have visualization run in-situ with simula-
tion [8,11,27,30], meaning parallel rendering will soon run on over
a hundred thousand processes.

These increased demands on parallel rendering have spawned a
resurgence in parallel rendering research. Recent studies investigate
the scaling of parallel rendering algorithms [19], the creation of new
image compositing algorithms [18, 31], and new compositing en-
hancements [7]. Although each of these studies improve the state of
the art in parallel rendering, all involve locally built algorithm im-
plementations that contain some arbitrary subset of enhancements
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and that may or may not be publicly available. The consequence is
that it is difficult to repeat the experiments, to compare the results
with each other, and to apply the algorithms to production software.

The intention of this work is to bridge the gap between indepen-
dent parallel rendering algorithm development and practical appli-
cation by bringing together multiple algorithms and enhancements
together in a production quality parallel rendering library. More
specifically, this paper provides the following.

e An introduction to a sort-last rendering framework named
IceT that is general purpose, production quality, and fully op-
timized.

e Describe an optimization to the compositing order for radix-k
and direct send that minimizes the number of copies of non-
overlapping pixels.

e A new method of image interlacing that requires no additional
image copying to reconstruct the final image.

e The telescoping algorithm, which can be applied to an exist-
ing image compositing algorithm that works best on powers
of two, such as binary swap, to run efficiently on any number
of processes.

e An investigation of the collection operation required at the
end of compositing and adjustments to the compositing algo-
rithms to minimize it.

e A comparison of the ever popular binary-swap algorithm
with the newer radix-k algorithm on leadership-class high-
performance computers. These tests are performed with every
enhancement one should expect in production quality parallel
rendering as well as with a variety of rendering modes that
can be encountered in production software.

2 PREVIOUS WORK

Although many aspects of parallel rendering have changed since
the sorting classification of parallel rendering algorithms was in-
troduced [12], these classifications are still used today because they
accurately characterize and predict the scaling performance of these
algorithms. When rendering on a hundred or more distributed
nodes, the most efficient class of algorithm is sort-last because it
scales extremely well with respect to the number of processes and
size of the geometry being rendered and because the main contribut-
ing factor to its overhead, the size of the image being rendered, is
fixed by the display that we are using [28].

The main characteristics of sort-last parallel rendering is that
geometry is statically partitioned; processes each independently
render images using only their local partition, and these images
are composited together by blending or comparing pixels. Con-
sequently, it is the behavior of this compositing operation that de-
termines the overall efficiency of sort-last parallel rendering.



2.1 Basic Parallel Compositing Algorithms

Over the years researchers have designed several variations of the
image compositing algorithm. One of the oldest and simplest al-
gorithms that is still in wide use is direct send [15, 16]. Direct
send assigns each process a unique partition of the image to be ren-
dered. After the local geometry is rendered, each process sends
each pixel fragment directly to the process responsible for com-
positing it. Each process then collects pixel fragments from all
other processes and combines them to form its partition of the im-
age. Although direct send is efficient in the amount of data it trans-
fers, the number of messages it generates grows quadratically with
the number of processes. Thus, for large numbers of processes the
network can get overwhelmed by many small messages.

One of the most popular image compositing algorithms is binary
swap [9, 10]. Binary swap executes in rounds. During a round,
each process pairs up with another process, the image is split in
half, the paired processes exchange image halves, and each process
composites the pixel fragments for the half of the image it received.
After log, n rounds, where 7 is the number of processes, each pro-
cess holds a unique fully-composited partition of the image. Binary
swap uses fewer messages than direct send: nlog, n total messages
with only n messages at a time (assuming minimal overlap between
rounds). Because the bisection bandwidth of a cluster interconnect
generally grows with respect to the number of nodes, the bandwidth
requirements on the network remain relatively fixed.

One of the problems with sort last is that it requires a number of
processes equal to a power of two. The simplest solution in deal-
ing with other process counts is to fold the images into a group of
the correct size. Create the largest group possible with a power of
two, and then send the image data from those processes outside the
group to a process inside the group. Those processes outside the
group sit idle while those inside the group continue on to compos-
ite the image. This approach has inefficiencies because processes
have to sit idle during most of the computation. The 2-3 swap algo-
rithm [31] takes a different approach. It relaxes binary swap such
that processes can be grouped into pairs of two (like binary swap)
or sets of three (unlike binary swap). Using these groups of two
or three, 2-3 swap can decompose any number of processes into
groups, and in this way all processes can take part in compositing
at all times.

Radix-k [18] is a combination of binary swap and direct send.
Radix-k first factors the number of processes into a series of what
are called k values, which need not be prime. In a sequence of
rounds, one per k value, radix-k partitions the processes into groups
of size k and performs a direct send within each group. The next
round recurses into processes with the same partition until all k val-
ues are used and each process has a unique partition. When it has
one round with a k value equal to the number of processes, radix-k
is equivalent to direct send. When it has log, n rounds with all &
values equal to two, radix-k is equivalent to binary swap.

Radix-k improves on binary swap by overlapping data transfers
with computation. When receiving data from multiple processes,
which happens whenever k is greater than two, radix-k can begin
compositing pixels as soon as the first message is received while
other messages are still in transit. Yet radix-k retains binary swap’s
ability to limit the total number of messages sent. Radix-k is also
able to handle process groups that are not powers of two because the
k value for each round can be any factor. That said, if the number
of processes factors into large prime numbers, the performance can
degrade to that of direct send.

2.2 Compositing Enhancements

A naive implementation of sort-last image compositing will con-
sider every pixel fragment from every process participating. How-
ever, in almost all practical use cases the geometry is, or at least
can be, partitioned spatially. When each process has geometry in a

confined spatial region, there is a great deal of empty space in the
original rendered images. A pragmatic image compositing algo-
rithm takes advantage of these empty spaces in two ways. First, the
pixels in these empty regions will be removed from communication,
thus making better use of available network bandwidth. Second, the
empty regions are not considered in the composite operation, which
reduces the overall computation performed.

There are two standard approaches for tracking the “active” pix-
els (those that have been rendered to) and “inactive” pixels (those
over empty regions). The first method is to track bounding boxes
around geometry. Typically, a box around the geometry in each
process is projected to screen space to define the region of pixels
that likely have geometry rendered to them. (The boxes are often
expanded to axis aligned bounding boxes to simplify management.)
Only the pixels in this region are read, transferred, and composited.
Ma et al. [10] show that in the common case tracking bounding
boxes reduces the total number of pixels transmitted from O(np) to
O(nl/ 3p), where n and p are the number of processes and pixels,
respectively.

[IF THE PAPER IS LONG WE CAN SHORTEN IT BY REMOVING
THE DISCUSSION ON ACTIVE PIXELS.]

The second approach for tracking active and inactive pixels is
to use run-length encoding [2]. A generic run-length encoder will
look for run lengths of any repeated value. However, when com-
positing images the active pixels tend to have run lengths of 1, so
run-length encoding can actually hurt in these regions. Thus, a bet-
ter approach is to use active pixel encoding, which classifies the
pixels as either active or inactive and provide run lengths for con-
tinuous regions of any active pixels. Moreland et al. [14] show that
this encoding is both effective and never adds to the data size even
in the worst pathological cases. Active pixel encoding improves on
region boxes by tightly identifying active and inactive pixels. There
is a greater overhead incurred by searching through the image for
inactive pixels, but this overhead is mitigated by considering the
bounding boxes during the initial encoding [29].

Although active pixel encoding almost always improves the per-
formance of compositing, it does introduce an issue of load balanc-
ing. As images are partitioned, some regions will have more active
pixels than others. By balancing the active pixels assigned to re-
gions, the parallel compositing becomes better load balanced and
performance can improve even further.

The most straightforward way of balancing active pixels is to
interlace the images [12, 26]F_] An image is interlaced by rear-
ranging regions of pixels, commonly scanlines, in a different order.
This reordering of pixels is designed such that when the images are
later partitioned, each partition gets pixels from all over the images.
Consequently, regions with many active pixels are distributed to all
the partitions.

The SLIC algorithm [25] integrates the direct-send algorithm
with inactive pixel skipping and image interlacing. It finds areas
of geometry overlap by projecting bounding boxes to screen space.
SLIC then breaks scanlines by areas of overlap and uses a simple
hashing function to assign these scanline fragments to processes.
The hash function provides load balancing and the tracking of over-
lap limits the total number of messages to O(n4/ 3), where n is the
number of processes, which is better than the original direct send
but worse than binary swap or radix-k.

One problem with image interlacing is that the pixels in the fully
composited region must be rearranged once again into the correct
order. This added overhead can remove the performance gains of
the load balancing. To get around this problem, Kendall et al. [7]
propose a method in which the partitioning for the radix-k algo-
rithm is adjusted so that each partition has the same amount of ac-

10ther literature uses the term interleave, but we feel the word interlace
is more descriptive.



tive pixels. Although Kendall’s algorithm improves load balanc-
ing, it also adds overhead in readjusting partitions for consistency
amongst all processes.

Most sort last algorithms rely on a static partitioning of the data
to produce empty regions of the data. Hybrid algorithms [22] also
use dynamic partitioning of the data to collect geometry by screen
region based on the current projection. Hybrid algorithms reduce
the compositing time at the expense of redistributing geometry,
which means the effectiveness of the technique is dependent on
the amount of geometry being rendered. Other approaches propose
ensuring empty space regions using static partitions with replica-
tion [21].

3 TESTING ENVIRONMENT

The Image Composition Engine for Tiles (IceT) is a high-
performance sort-last parallel rendering library [13]. Although
originally created to capture sort-last rendering algorithms for tiled
displays [14], IceT also works effectively for smaller single image
displays.

IceT contains several image compositing algorithms, and its in-
ternal architecture makes it straightforward to add new algorithms.
It also optimizes the compositing process by tracking the projec-
tion of geometry and compressing images through run-length en-
coding. IceT also supports multiple rendering modes allowing both
color blending for volume rendering and z-buffer comparisons for
opaque geometries.

IceT is used in multiple production products like ParaView [24]
and Vislt [1] and has been used to achieve record-breaking render-
ing rates [6]. As such, IceT is an excellent code base for creating,
testing, and comparing image compositing algorithms. It already
contains routines for efficiently capturing, compressing, and com-
positing images. It also contains efficient existing algorithms to
which to compare new ones. Furthermore, any optimizations or
new algorithms added to IceT can be applied to existing production
software.

The experiments we run for this paper are encapsulated in IceT’s
testing suite under the SimpleTiming test. This test evenly parti-
tions volume-wise a cube of space amongst processes. Each pro-
cess renders a hexahedron filling the space it is assigned as a proxy
geometry for the rendering. We use this proxy rendering to simplify
compiling and porting, which should be particularly useful for any-
one wishing to repeat these experiments. In any case, the render-
ing time is discarded as we are interested only in the compositing
overhead. Figure[T]shows an example of images rendered by Sim-
pleTiming. For each SimpleTiming test we render 101 frames at
pseudorandom viewpoints, always using the same seed for consis-
tency between experiments. The time for the first frame is thrown
out of any average because it contains added overhead of memory
allocations not included in subsequent frames.

Figure 1: Examples of images rendered in our experiments.

Most of the experiments reported in this paper were run on Ar-
gonne National Laboratory’s Intrepid Blue Gene/P computer [23].
Intrepid comprises a total of 40,960 nodes, each containing four

cores. Each experiment was run in one of two modes. The first
mode, Shared Memory Processors (SMP), runs a single MPI pro-
cess on each Intrepid node. The intention of the mode is to run
multiple threads to use all four cores, but in our experiments we run
a single thread using only one core. The second mode, Virtual Node
(VN), runs four MPI processes on each Intrepid node. It treats each
core on the node as a distributed memory processes even though it
is possible to share memory. Data transfers amongst the processes
within a single node still require explicit MPI memory passing al-
though the underlying MPI layer bypasses the network infrastruc-
ture in this case. We consider both running modes because both
are commonly used today and each has differing demands on the
underlying subsystems.

Supplemental experiments were run on Sandia National Labo-
ratories’ Red Sky computer. Red Sky comprises a total of 2,279
nodes, each containing dual 2.93 GHz quad core Nehalem X5570
processors (8 cores in all). Nodes are connected by a QDR In-
finiBand network. All experiments on Red Sky use all eight cores
of each node (the equivalent of VN mode on Intrepid). Red Sky
has faster processors than Intrepid but a slower interconnect, which
changes the dynamics and optimizations of parallel algorithms run
on them.

4 COMPOSITING ORDER

During our integration of radix-k into IceT, we discovered that the
compositing order of incoming images could make a significant
performance difference. In our initial implementation of radix-k,
we got dramatically different results than those reported by Kendall
et al. [7]. Rather than getting improved performance with radix-k,
we saw worse performance. Deeper inspection revealed that al-
though our radix-k implementation was properly overlapping com-
munication with compositing computations, the computations took
longer with larger values of k.

This increase in compositing time is caused by a change in the
order images are composited together. The order in which images
are composited within a round is not specified in the original radix-
k algorithm; however, generally images are composited in the order
they are received and accumulated in a single buffer, as demon-
strated in Figure @ The issue is that composited images grow
with respect to the non-overlapping pixels in each image. Pixels
that do not overlap are simply copied to the output. In the example
of compositing images for a radix-k round of £ = 8 given in Fig-
ure[2a] non-overlapping pixels in the leftmost images are copied up
to seven times before the final image is produced. In contrast, bi-
nary swap performs the equivalent composites in a tree-like order
as shown in Figure 2B} and no pixel needs to be copied more than
three times.

SRS

(a) Accumulative Order (b) Tree Order

Figure 2: Two possible orders for compositing eight images. Boxes
represent images and arrows indicate how two images are compos-
ited together to form a third image.

Given this observation, we made two independent improvements
to the radix-k algorithm. The first improvement speeds-up the com-
positing computation. Specifically, run lengths of non-overlapping
pixels to be copied are collected and copied in blocks rather than
independently cast and copy each pixel value, as was done before.



The second improvement constrains the compositing to follow the
specific tree composite order. That is, rather than composite an in-
coming image whenever possible, force the compositing to happen
in an order like that in Figure[2b] This constraint may cause radix-k
to wait longer for incoming images, but the overhead is more than
compensated by the improved rendering performance.
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Figure 3: Comparative performance of radix-k with improved com-
positing computation and changing the order of compositing. All
runs were performed on 256 nodes of Intrepid in SMP mode gener-
ating images with 2048 x 2048 pixels and transparent blending.

Original Composite
0.08 Accumulative Order

0.06

Original Composite
Tree Order

0.04
\_’/\ Faster Composite

Accumulative Order

Average Composite Time (sec)

binary radix-k 4 radix-k 8 radix-k 16 radix-k 32 radix-k 64 radix-k
swap 128

Figure 4: Comparative performance of radix-k with improved com-
positing computation and changing the order of compositing. All
runs were performed on 2048 nodes of Intrepid in SMP mode gen-
erating images with 2048 x 2048 pixels and transparent blending.

Results of these performance improvements are independently
shown in Figures[3]and [} The improvements in compositing com-
putation lower the overall compositing time and reduce the pixel-
copying overhead of larger k values. The change in composite or-
dering removes the extra overhead of pixel-copying and maximizes
the performance of larger k values.

5 MINIMAL-COPY IMAGE INTERLACING

The major problem encountered with sparse parallel image com-
positing is that it introduces load inbalance, which limits the im-
provements attained from compressing images. A straightforward
approach to balance the compositing work is to interlace the im-
ages [12,26]. Interlacing basically shuffles the pixels in the image
such that any region of the image with more compositing work is
divided and distributed amongst the processes.

Interlacing incurs overhead in two places during parallel com-
positing. The first overhead is the shuffling of pixels before any
compositing or message transfers take place. This overhead tends to

be low because it occurs when images are their most sparse and the
work is distributed amongst all the processes. The second overhead
is the reshuffling after compositing completes to restore the proper
order of the pixels. This second suffling is substantial as it happens
when images are at their most full and the maximum amount of pix-
els must be copied. Furthermore, because pixels must be shuffled
over the entire image, this reshuffling must happen after image data
is collected on a single process, which means the reshuffling itself
is poorly load balanced.

Here we provide an interlacing algorithm that completely avoids
the needs for this second reshuffling. The algorithm is based on the
simple observation that at the completion of either binary swap or
radix-k, each process contains a partition of the final image. If we
arrange our initial shuffling such that each of the partitions remain
a contiguous set of pixels, then we do not need the final reshuffling

at all.
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Figure 5: Pixel shuffling in minimal-copy image interlacing.

Our minimal-copy image interlacing is demonstrated in Figure[5]
Rather than picking arbitrary partitions, such as scan lines, to inter-
lace, our interlacing uses the partitions that binary swap or radix-k
will create anyway. The partitions are reordered by reversing the
bits of their indices, which creates a van der Corpt sequence to
maximize the distance between adjacent blocks. The image with
the interlaced block is composited as normal. Each resulting image
partition is already intact, it is only the implicit offsets that need to
be adjusted.

binary | radixck | radixk | radix-k | radix-k | radinck | radick | radix-k
swap | 4 8 6 32 64 | 1

binary | radixck | radixck | radix-k | radix-k | radix-k | radixck | radixck
swap | 4 8 16 | 32 | 64 | 128 | 2
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(b) 2048 processes.
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Figure 6: Comparative performance of radix-k with and without im-
age interlacing. The composite time for each frame is represented
as mark in the plot. All runs were on Intrepid in SMP mode.
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Figure 7: Jumpshot logs demonstrating the effect of minimal-copy
image interlacing. The cyan color denotes the blending operation
whereas the salmon and red indicate communication and waiting on
messages. Green represents the encoding and splitting of images,
and the dark blue is the time spent interlacing.

Figure [B] compares the compositing performance with and with-
out image interlacing. Image interlacing both reduces the over-
all time to composite and reduces the variability between different
viewports. Figure [7] compares Jumpshot logs of compositing with
and without image interlacing on 64 processes using radix-k with
k = 16. With image interlacing, the compositing work is better bal-
anced and less time is spent waiting for messages.

6 TELESCOPING COMPOSITING

A well known problem with binary swap is its inability to deal well
with processor counts that are a power of two. A simple and com-
mon technique to apply binary swap to an arbitrary count of pro-
cesses is folding. Folding finds the largest count of processes that
is a power of two and forms a group of that size. Any process out-
side of this group (of which there are always fewer than inside the
group) sends its entire image to one process inside the group where
it is blended with the local image. The processes inside the power-
of-two group composite normally while the remaining processes
remain idle. Yu et al. [31] show that there is a performance penalty
for folding.

2-3 swap [31] augments binary swap by grouping processes in
either twos or threes in each round rather than exclusively twos.
Because groups of two and three divide images differently, inter-
mediate steps between rounds repartition images and send data to
ensure that all processes have image partitions on the same bound-
aries. Radix-k also supports process counts that are not a power of
two by forming groups that are any factor of the process count. This
approach works well if the process count has small factors, but is
inefficient for counts with large factors (as demonstrated by the re-
sults given in Figure 0] which concur with observations of Peterka
et al. [19] for direct send).

We provide an alternative algorithm called telescoping for sup-
porting arbitrary process counts. Our telescoping algorithm pro-
vides a simpler indexing and partitioning scheme than 2-3 swap and
can be applied to most base parallel compositing algorithms. We

demonstrate telescoping to both binary swap and radix-k. Telescop-
ing works similar to folding except instead of sending images be-
fore compositing, images are sent afterward to minimize idle time.

Telescoping works as follows. [SHOULD THERE BE A FORMAL
ALGORITHM LISTED?] At the onset, the algorithm finds the largest
process subgroup that is a power of two. Of the remaining pro-
cesses, it again finds the largest power-of-two subgroup. This is
repeated until all processes belong to some group that has a power
of two size. Then the algorithm independently and concurrently
runs a parallel image compositing (such as binary swap or radix-k)
on each group.

We now assume that each instance of the parallel image com-
positing results in an image evenly partitioned amongst all pro-
cesses. Most parallel image compositing algorithms (including bi-
nary swap and radix-k) satisfy this criterion. To complete the image
compositing, processes in the smaller groups send their partitions
to those in the next larger group, starting with the smallest group.
The second smallest group receives image data from the smallest,
blends this data to its local image data, and sends the results to the
third smallest group. This continues until the largest group receives
and blends image data from the second largest, at which point the
composite is complete. Figure [§] demonstrates the communication
pattern of the telescoping algorithm.
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Figure 8: Augmenting an algorithm to composite on a number of
processes that is not a power of two.

Although the sending of image data across groups happens se-
quentially (from smallest to largest), the overhead is minimal. In
binary swap and radix-k, smaller process groups have fewer rounds
and therefore usually finish earlier. Thus, by the time the largest
groups finish their “local” composite, the image data from the next
smallest group is usually waiting in an MPI buffer.

Telescoping is most efficient (and easiest to implement) when
the partition boundaries of a process group of one size align with
those of other process groups. The image partitioning algorithm in
IceT ensures this consistent partitioning by first computing the re-
gions for partitions of the largest group and then combining regions
for smaller groups. A second criterion of running telescoping ef-
ficiently is that it is necessary for a smaller group to know where
each partition will be in the larger group. As this partition indexing
is a necessary part of the implementation of binary swap or radix-
k, determining the same indices for telescoping is trivial. It is also
trivial to use telescoping with the minimal-copy image interlacing
described in Section [B]since the resulting partitions are the same as
those for compositing the largest process group.

Figures [9] and [T0] report the performance of binary swap and
radix-k on Intrepid with and without telescoping. Unlike the other
data given in this paper, these measurements come from the aver-
aging of 10 frames rather than 100 due to the large number of mea-
surements we took. Figure[J]demonstrates that the original radix-k
performs well for some process counts but abysmally for others.
Figure [T0]shows an overhead for folding binary swap analogous to
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Figure 9: Comparison of telescoping and non-telescoping versions
of binary swap and radix-k (favoring k = 32) on Intrepid in SMP
mode.
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Figure 10: Comparison of telescoping and non-telescoping versions
of binary swap and radix-k (favoring k = 32) on Intrepid in SMP
mode. The vertical axis is scaled to see detail in the telescoping
algorithms.

that reported by Yu et al. [31]. Telescoping makes both algorithms
perform reasonably consistent for all process counts.

Figure [TT] shows the data for the same experiment scheduled on
Intrepid in VN mode to larger process counts (and again using 10
frames per measurement). Values for radix-k without telescoping
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Figure 11: Comparison of telescoping and non-telescoping versions
of binary swap and telescoping version of radix-k (favoring k = 32)
on Intrepid in VN mode.

are not shown because the frame times are too long to measure in
the amount of processor time we have available. We did, however,
record times for the largest process counts where we expect the
worst behavior. Our longest average measurement with unaltered
radix-k is 12.88 seconds per frame for 8191 processes (which is,
unsurprisingly, the largest prime number of processes for which we
ran). The same compositing using the telescoping version of radix-
k took only about 0.05 seconds per frame.

We also note some telescoping radix-k measurements in VN
mode that are anomalous compared to other process counts (al-
though consistent for all frames of that run). Note the blue spikes in
Figure[[T} The largest such spike is 0.55 seconds per frame at 4097
processes. We are not sure why these spike occur, but we observe
that they happen when a small process group has to send images to
a much larger process group. Since these spikes only occur with
radix-k and in VN mode, we suspect that this telescoping commu-
nication is happening at the same time as the larger group’s radix-k
communication, and the two interfere with each other.

7 IMAGE COLLECTION

As previously mentioned, parallel compositing algorithms finish
with image data partitioned amongst the processes. Although the
compositing is technically finished at this point, it is of little prac-
tical use if it is split into thousands of pieces and distributed across
nodes. Real use cases require the images to be collected in some
way. For example, ParaView collects the image to the root node
and then sends it over a socket to a GUI on the user’s client desk-
top [3].
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Figure 12: Compositing times on Intrepid when considering time
to collect image fragments into single image. All times are given
for binary swap.

Because the collection of the image is so important in practice,
it is proper to also measure its effect when scaling the image com-
positing algorithm. Figure [T2] compares compositing times with
and without image collection using an MPI_Gatherv operation. Al-
though the numbers given here are only given for binary swap, the
variance between versions is minor compared to the overhead of
collection.

Clearly the MPI_Gatherv collect is not scaling as well with re-
spect to the rest of the compositing algorithm. To make the col-
lection more efficient, we propose limiting the number of partitions
created in the parallel compositing algorithm with a simple change
to the binary swap and radix-k algorithms. The algorithms pro-
ceed in rounds as before. As long as the total number of partitions
created remains under a specified threshold, images are split and
swapped as normal. However, when this threshold of partitions is
reached, images are no longer split. Instead, one process collects



all the image data from other processes in the group. The collec-
tion process continues while the other processes drop out. [FIGURE
DEMONSTRATING THIS?]

Because this change causes processes to sit idle, it makes the
compositing less efficient but potentially makes the collection more
efficient. Collecting rather than splitting images is only useful to
the point where the improvements in collection outweigh the added
inefficiencies in compositing. We should also note that limiting the
number of partitions created limits the number of partitions used
in the minimal-copy image interlacing described in Section [3] but
since our reduced image partitions only contain a few scan lines,
the effect is minimal.
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Figure 13: Compositing times on Intrepid when considering the
time to collect image fragments into a single image and the total
number of partitions is limited by collecting within rounds rather
than splitting. All times are given for binary swap.

Figure[T3]demonstrates the effects of limiting the number of par-
titions on the binary swap algorithm (radix-k with various values
for k is measured in the following section). Due to limits in proces-
sor allocation, we have not tested SMP mode with 8192 nodes, but
other measurements suggest that the results will be comparable to
VN mode with 8192 cores.

Our best composite + collect measurements in Figure[T2]occur at
512 partitions, so we limited the maximum number of partitions to
256 and up. Limiting the number of partitions to collect clearly
benefits the overall time for larger process counts. Our optimal
number of partitions is in the 256-512 range.

8 SCALING OF BINARY SWAP AND RADIX-K

For our final experiment, we observe the rendering system with all
the improvements discussed in this paper (except telescoping be-
cause we only considered powers of two) scaled up to massive pro-
cess counts. Figure [T4]summarizes the results. Keep in mind that
these timings include collecting image partitions into a single im-
age, a necessary but expensive operation that is often overlooked.
All runs come from Intrepid scheduled in VN mode. For all runs
we set the maximum number of partitions to 512 although the actual
number of partitions is smaller with values of k that do not factor
512 evenly.

For most runs, radix-k with k = 32 and k = 64 are significantly
slower than the others. This is not an effect of the radix-k algorithm
itself but rather the maximum number of partitions that we used.
For example, two rounds of radix-k with k = 32 create 32 x 32 =
1024 partitions, which is above our threshold. Thus, the partition
threshold is actually throttled back to 32, which results in slower
compositing that is not compensated by faster collecting.
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Number of Processes

Number of Processes

Avg. Composite + Colect Time

(a) Transparent Geometry (b) Opaque Geometry
Figure 14: Performance of binary swap and several versions of
radix-k on Intrepid up to 65,536 cores. Transparent rendering uses
4 floats (16 bytes) per pixel, and opaque rendering uses 4 bytes + 1
float (8 bytes) per pixel.

Our results show an increase in overall time for the largest pro-
cess counts. This increase is primarily caused by an increase in
collection times despite our limits on the total number of partitions.
[PLOT DEMONSTRATING THIS.] Nevertheless, we are able to com-
pletely composite and collect an image on 65,536 cores in less than
0.12 seconds for transparent images (using floating point colors)
and in less than 0.075 seconds for opaque images (using 8-bit fixed
point colors and floating point depths).

9 CONCLUSIONS

In this paper we describe several optimizations to image composit-
ing for sort-last parallel rendering. We also demonstrate our com-
pleted system on some of the largest process counts to date. Our
findings show that image compositing continues to be a viable par-
allel rendering option on the largest computers today. These data
also suggest a path for future research.

The design of new fundamental compositing algorithms in addi-
tion to binary swap, radix-k, and others is probably unnecessary. In
our observations, the performance difference between binary swap
and the various factorings of radix-k are small compared to the other
optimizations of the system such as sparse pixel encoding, load bal-
ancing, and image collection. In fact, we find image collection to
be the largest overhead currently in our rendering system. Address-
ing image collection is one of the most promising avenues of future
research.

Another fruitful area of research is better methods to take advan-
tage of multi-core processors. Although it is reasonable to ignore
the shared memory between the four cores on Intrepid, future com-
puters will have many more cores per node. Some introductory
work has analyzed the behavior of image compositing in shared-
memory architectures [17,20], but further refinement is required to
take advantage of the hybrid distributed memory plus shared mem-
ory architecture of large systems and to evolve the compositing as
architectures and rendering algorithms change.
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