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Road map

e Heterostructure Nanowires

— Why are electronic properties
in 1D nanowires so unique?

ity

Electron dens!
o = =

e Carbon Nanotubes

— Can we control

optoelectronic properties in
carbon nanotubes?

* Overall theme: theory to complement experiment
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Nanowires

 Immense interest in nanowires for

transistors, circuits, devices

s - nanowire

field-effect
transistor

Functional Nanowires
G !

Reduction in dimensionality yields novel
nanoscale properties
— Ballistic transport, conductance quantization

« Can you control
electron gas formation?
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Core-shell nanowires

 Core-shell: heterostructure made with 2 different
semiconductors w

electron
wavefunction

conduction
band

What are the properties of this
confined electron gas?
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Core-shell nanowires

* Huge parameter space (both experimental and
computational)

bandedge of core/shell

core size shell thickness

core doping shell doping
shell material

core material

core geometry! shell geometry!

* Theory plays important role in exploring large
parameter space
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Electron gas formation

 Forming an electron gas

band

i -

electron gas

conduction vint Time, t=0 @

donor atoms

[

nﬁ: = Fermi level

core r

Vv(r)4 Time, t = t @

<«— ionized donors

- -E. = Fermi level
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Theoretical description

« Complex interplay between quantum mechanics
and electrostatics
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Theoretical description

« Complex interplay between quantum mechanics
and electrostatics

« Quantum mechanics from Schrodinger equation

—2h—n;V2Ti(f)+V(f)Tt (F)=EY,(7)
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Theoretical description

« Complex interplay between quantum mechanics
and electrostatics

« Quantum mechanics from Schrodinger equation

—2/?; VA, (F)+V(F)¥,(F)=EY,(7)

» Electrostatics from Poisson equation

v [e(7)VV () +B(F)]=-p(7) P ()= Pas (P ¥, () £ (B )
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Theoretical description

Complex interplay between quantum mechanics
and electrostatics

* Quantum mechanics from Schrodinger equation

—2/?; VA, (F)+V(F)¥,(F)=EY,(7)

Electrostatics from Poisson equation

v [e(7)VV () +B(F)]=-p(7) P ()= Pas (P ¥, () £ (B EyT)

Charge neutrality constraint

[ Prosie o (F)F = [ P suns (F) 7 + [ ¥, ()] (B, E, TP
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Self-consistent solution

* Must solve Poisson and Schrodinger equations
self-consistently

Start with v Solve WY p :
initial guess » Schrodinger > SogleuZElsson
for V equation G

No - Use

new

Yesl! Fermi energy

and neutrality

Converged? <

Give
Bradley
Seminar
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Hexagonal geometry

hexagonal
GaN nanowires

1D slice |

y (nm)

Axial direction: [0001] finite element mesh
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Hexagonal geometry

exagonal
aN nanowires

1D slice |
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Hexagonal band structure

hexagonal
GaN nanowires
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Electron Density, n

y (nm) 0 50 X (nm)

electron density, 3D view
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electron density, 2D view

high density at corners
completely different than bulk/thin-film
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Hexagonal electron density

electron wavefunctions

E, = 0.066 eV E, = 0.068 eV
E, = 0.068 eV E, = 0.071 eV
S .
‘ e
E, = 0.071 eV E, = 0.075 eV

- -
‘¢ . 0
. -
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Electron Density, n
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electron density, 3D view
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electron density, 2D view

high density at corners
completely different than bulk/thin-film
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Triangular geometry

The [0001] face is polar!

{1107}

—0/2

triangular
GaN nanowires

+0

N-face A
'§ +0/2 +0/2

(0001) L Ar,

Axial direction: [1,1,-2,0]
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Polarization effects

The [0001] face is polar!

e

Ga(Al)-face

§ -0/2

Electron Density, n

y (nm) 50 100 x (nm)

electron density, N-face

+0

e

+0/2 +0/2

Electron Density, n

y (nm) 50 100 X (nm)

electron density, Ga-face
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Electron density maps

E = E = E =
0.140 eV 0.144 eV 0.148 eV
- e E = E- Es =
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y (nm) %0 100 X (nm)
electron density, N-face - et -
E3 -
0.083 eV
N\
; 10 A
105"~ L E4 = E5 = E6 =
® T TR 0.088 eV 4 0.089 eV uy 0.094 eV
y (om) e N\ /2 \ 20N
nm X (nm)

electron density, Ga-face

\Eﬂ Sandia National Laboratories

B.M. Wong , F. Leonard, et al. submitted (2011)



Variations In size

 How does electron gas evolve with size?

core size = 10 nm core size = 30 nm core size = 50 nm core size = 70 nm

Electron Density, n_
Electron Density, n
Electron Density, n

Electron Density, ne

- =20
y (nm) x (nm)

core size = 90 nm core size = 100 nm core size = 110 nm core size = 120 nm

Electron Density, n_
Electron Density, n,
Electron Density, n,
Electron Density, n,

20 e 50
y (nm) x (nm)

\Eﬂ Sandia National Laboratories B.M. Wong , F. Leonard, et al. submitted (2011)



Variations In size

« N-face electron gas:

core size = 20 nm core size = 40 nm core size = 60 nm core size = 80 nm
15 15
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Core size large — recover bulk behavior
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Critical doping level

« Parametric study of electron gas formation

Electron Number Density for N-face Nanowire
200

core size = 10 nm

xxxxx

core size = 200 nm 20

. e f Doping Density (cm'3)

« Electron gas formation requires higher doping at
nanoscale dimensions
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Conclusions

* Reduction in dimensionality leads to quasi-1D
electron gases at corners/interfaces

* Methodology very general (can include other effects)

« Calculations allow guided understanding of electron
gas formation in heterostructure nanowires

« Excellent synergistic area for theory and experiment

A
ﬁﬁ"“ﬂ

xxxxx

1 GaN/AIGaN

i nonpolar
nanowires N-face Ga-face P

hexagonal
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Organic nanostructures

* Molecular carbon nanorings

* First synthesized in Sept. 2008 (Berkeley)
— J. Am. Chem. Soc. 130, 17646 (2008)

N=9

! (12,12) carbon
nanotube

— Each nanoring is fundamental unit of armchair
nanotube

\Eﬂ Sandia National Laboratories




Unexpected excitation spectra

* Experiments showed absorption energy
Increases with nanoring size!

« Seems to contradict quantum confinement
effects
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Unexpected excitation spectra

« Experiments showed absorption energy
Increases with nanoring size!

« Seems to contradict quantum confinement
effects

Particle in a box:

& 8mL2

Bryan M. Wong

Particle on a ring:
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Theoretical analysis

« Compared both linear and cyclic structures
containing 5 — 18 phenyl units

» Excited-state quantum Calculatlons (TD-DFT)

/

ey

—a— gcyclic| | | 2 4
6 8 10 12 14 16 18
Number of Benzene Rings

= Optical Excitation Energy (eV)

Eopl
N
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Excitonic effects

* Transition density matrix

v, )+, |che, v, )

f
Cm Cl’l

@) =

\Eﬂ Sandia National Laboratories



Excitonic effects

* Transition density matrix

v,)

T T
C.c, l//g> + <l//g c.C.

). v

* Yy and g, = ground and excited states

¢t and c; = creation and annihilation of electron
In /th basis orbital in @

* (Q),, gives joint probability of electron-hole
delocalization between sites m and n
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Transition density matrix

)+ (v, |che,

v.)

-
. -
. | » O » »
lu lu.lll
-
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Transition density matrix

>+<Wg‘CTC

v.)
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Transition density matrix

v.)

v, )+, |cle,

f
Cm Cl’l

(2.),, =V,
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Exciton delocalization

Cyclic  [(Q)l Linear  |(Qq)l

RENEN

N=5 g%"‘ga

It oY%
BRERR

linear geometry: electron-hole pair
localized in middle and away from

N edges
N=14 _ _
cyclic geometry: electron-hole pair
. B delocalized over entire circumference
N=18
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Exciton binding strength

Evac 'y
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ELUMO
e
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En=1P -EBA- B

cyclic geometry: IP — EA decreases
significantly slower than E_
— E,,; increases with size
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Conclusions

* First-principles quantum calculations reveal
mechanism of unexpected excitation spectra

» Excitonic effects play important role in unusual
optical properties of nanorings

delocalized electron-hole
transition density matrix

— —l

o M

e " .
) .'-j

Hole Coordinate
= [a )] o

5 4 & 8 10 12

carbon nanoring Electron Coordinate
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Optical detection in nanotubes

 |nspiration from Nature

.fi;
| eny
ST _ Ll "*'\Ez—“
Disks L{E
“’&vi‘v o
| | | |
GHy H €Hy
cizisomer
Cell body
""-h.._‘_h

3 nghtl TEnz',rrnas
Synaptic -

terminal n Y
?‘\i::ﬂ"

Reg 4t

trans isomer

Rhodopsin
Opsin

— Human vision relies on conformational change in
rhodopsin
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Optical detection in nanotubes

——470 nm
~——— 530 nm
— 630 nm

S 4y Ty
ldlli;'Lv/\v)Lof\/ T::lw¢m

DR1-PB (467 nm)

:::“Noz

-10 B 0 5

semi-conducting carbon nanotube
functionalized with DR1-PB

* Threshold voltage of nanotube shifts at 470 nm
(blue) & 530 nm (green)

* Voltage unchanged for red light




C lor Detection

« Can use different chromophores to make
sensitive nanoscale color-detector
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Structures and absorbance Threshold voltage of functionalized
maxima of different nanotube correlates with
chromophores absorption spectra (dotted

curves) of isolated molecule
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Quantum calculations

Calculations show DR1
binds noncovalently to
nanotube surface

DR1P SWNT DR1P/SWNT

Binding relatively
strong but band gap of
nanotube is unchanged

=

Total bandstructure is
superposition of
molecule + nanotube

\Eﬂ Sandia National Laboratories X. Zhou, T. Zifer, B.M. Wong, et al. Nano Letters. 9, 1028 (2009)
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A simple model

* IS — trans isomerization well described by two-
level system

2.0 —
e 1 rim I
& (]
2 15. /

S
8 1.0-

O £
o § = DR1
Rt * DO3
= ] 4:1 Hexyl/DR1
=

0.0

000 001 002 003
1/Power Density (m*/W)
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A simple model

* CIis — trans isomerization well described by two-
level system

2.0 e
—_ 1 o I
- [}
15l
S
g 1.0
o ‘/
> ] ¥
o /e
©° / = DR1
-g 0.5_ e D03
= | - 4:1 Hexyl/DR1
S
0.0 . : . T .
0.00 0.01 0.02 0.03
1/Power Density (m*/W)
r C -
=1 2 -1 NT
AI/g b 1+_I (I/trans_l/cis)
a Ctot

« Voltage™' proportional to (illumination power)
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Interesting kinetics

« Reversible photo-induced conductance

40/ 0.0 funmed
J C
=N \
- 35 = L
§-0.5' o [ ]
| o ] \ s
330 = ‘ ﬂ"'".'a-..
—_ 8} =N,
- s
25- -1.0 % e
i I. -.f..-':!. .:-.-
0 200 400 600 0 5 10
t (s) t(s)

Conduction of nanotube
device increases upon
illumination & fully
reversible

2 different time scales:
(1) fast illumination
(2) slow relaxation

\Eﬂ Sandia National Laboratories X. Zhou, T. Zifer, B.M. Wong, et al. Nano Letters. 9, 1028 (2009)



Conclusions

e Sensitive nanoscale color detector
* Nanoscale field effect transistor (FET)!

Electrons in Electrons out
f\ Metal contact f{/"’

“\  Gate

Thin-film semiconductor |, voltage

carbon nanotube FET
with tunable molecular gate

conventional solid-state FET

Featured in Nature Photonics 3, 192 (2009)
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Wrap up

« Extremely interesting electronic effects at
nanoscale dimensions

« Synerqistic area for theory and experiment

delocalized electron-hole
transition density matrix

—
(=]

[Ce i =
L

Electron density

Hole Coordinate

y 20— :
(/707/ 20 B _20$k“m\

s 4 6 8 10 12
carbon nanaring Electron Coordinate
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Transition dipole moments

(a) Transition moments in cyclic geometry effectively cancel

(b) Total transition moment increases with length in linear system
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Quasiparticle gap & aromaticity

¢ 9.0 .96

- - n

aromatic quinoid

electrons localized within electrons delocalized across
phenyl ring entire structure
energetically stable energetically /ess stable
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Quasiparticle gap & aromaticity

— T —8 T
> —e— cyclic —e— cyclic
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©
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Number of Benzene Rings Number of Benzene Rings

Less negative Nucleus-Independent Chemical Shift (NICS) values
correspond to quinoidal character (destabilization)

Smaller nanorings are electronically destabilized (smaller quasiparticle gap)
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Delocalization & aromaticity
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