

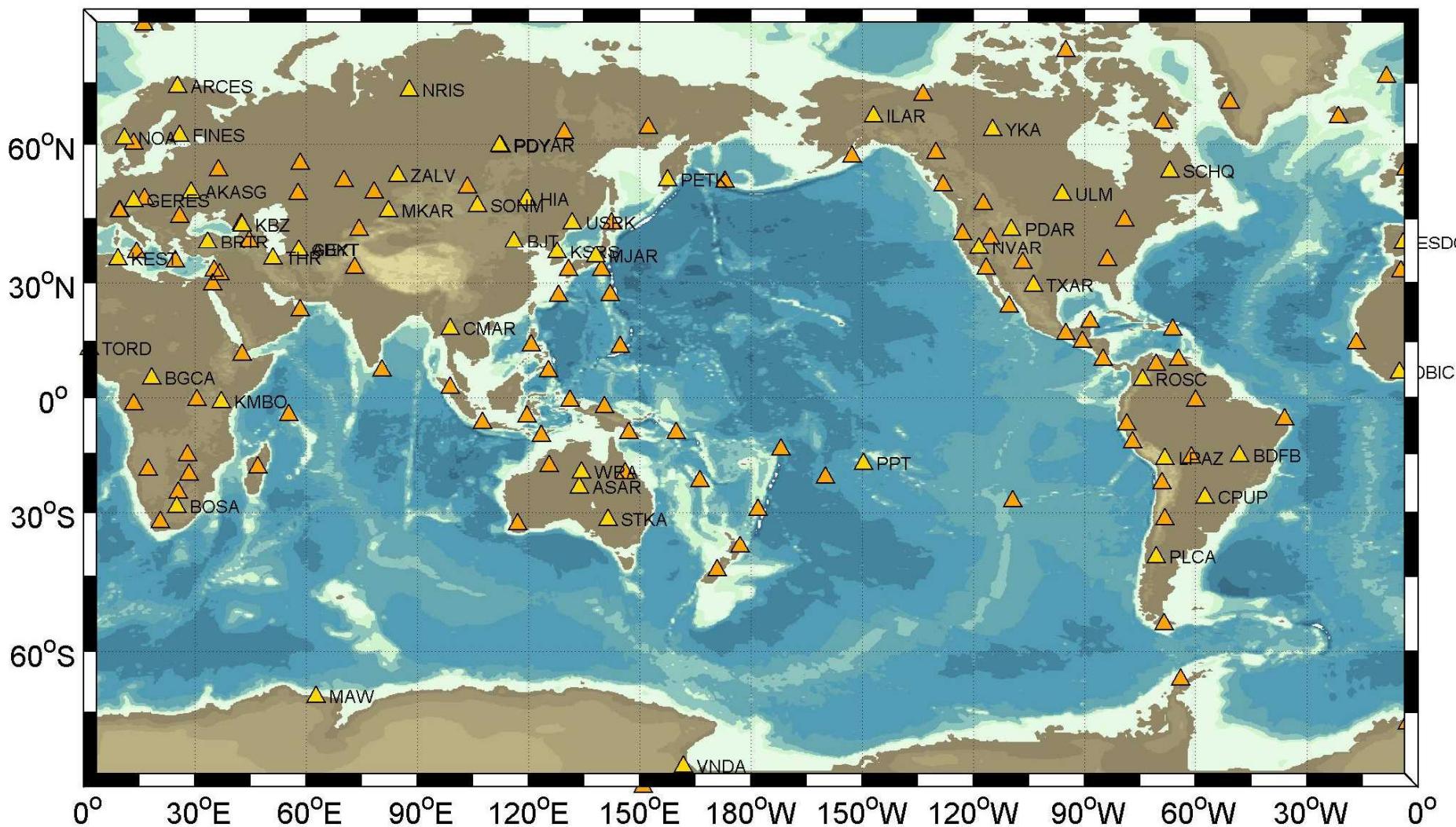
PEDAL: A New Event Detection and Signal Association Algorithm

Sandy Ballard, Tim Draelos, Chris Young

Sandia National Laboratories

PEDAL

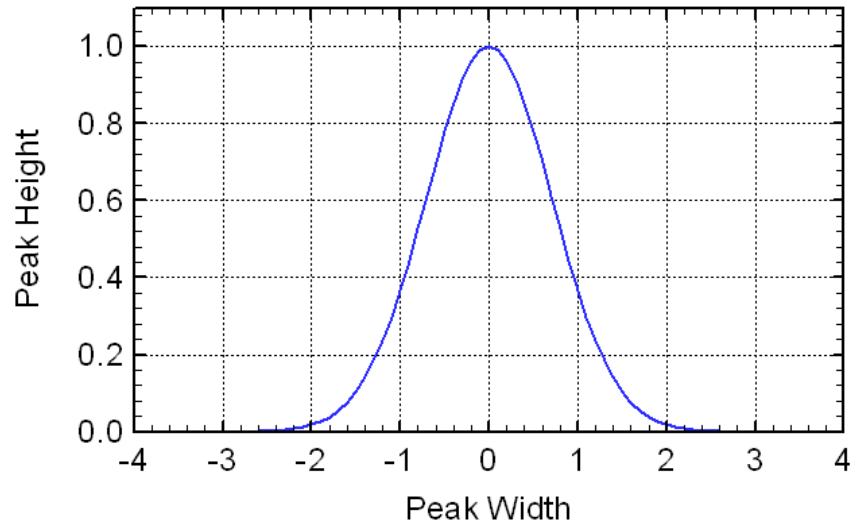
IMS Primary + Auxilliary Network



PEDAL

Consider a single arrival A_i , and a single 4D position ω , in space-time. The conditional ‘probability’ that A_i was generated by a seismic event, E_ω , which occurred at ω , is given by

$$P(T_i | E_\omega) = \exp \left[- \left(\frac{T_i - p_{T,i,\omega}}{\varepsilon_{T,i,\omega}} \right)^2 \right]$$

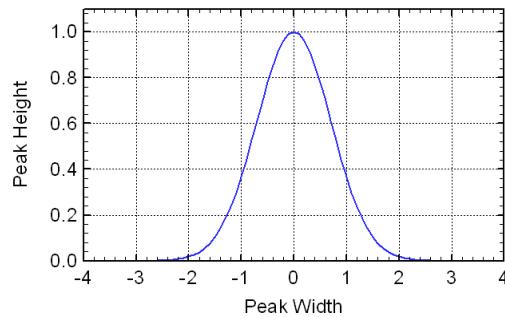
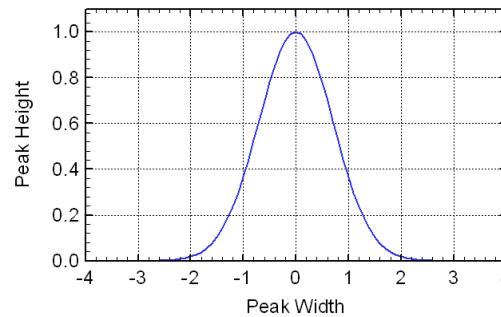
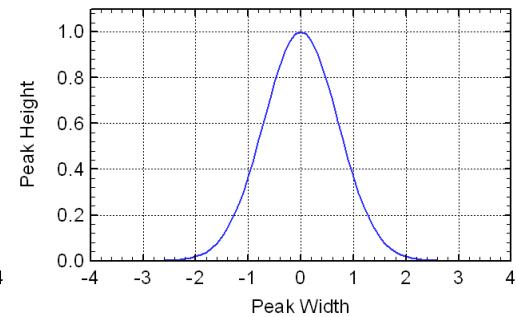


where T_i is the observed arrival time, $p_{T,i,\omega}$ is a prediction of the arrival time and $\varepsilon_{T,i,\omega}$ is a tolerance value, or estimate of the total uncertainty of the observation.

PEDAL

The conditional ‘probability’ of the observed arrival, A_i , given E_ω , is given by the joint ‘probability’ of all the components of arrival A_i

$$P(A_i | E_\omega) = \exp\left[-\left(\frac{T_i - p_{T,i,\omega}}{\varepsilon_{T,i,\omega}}\right)^2\right] \bullet \exp\left[-\left(\frac{az_i - p_{az,i,\omega}}{\varepsilon_{az,i,\omega}}\right)^2\right] \bullet \exp\left[-\left(\frac{sh_i - p_{sh,i,\omega}}{\varepsilon_{sh,i,\omega}}\right)^2\right]$$



Where $p_{T,i,\omega}$, $p_{az,i,\omega}$ and $p_{sh,i,\omega}$ are the expected arrival time, azimuth and horizontal slowness for an event at ω , and $\varepsilon_{T,i,\omega}$, $\varepsilon_{az,i,\omega}$, and $\varepsilon_{sh,i,\omega}$, are tolerance values.

PEDAL

$$P(A_i | E_\omega) = \exp\left[-\left(\frac{T_i - p_{T,i,\omega}}{\varepsilon_{T,i,\omega}}\right)^2\right] \bullet \exp\left[-\left(\frac{az_i - p_{az,i,\omega}}{\varepsilon_{az,i,\omega}}\right)^2\right] \bullet \exp\left[-\left(\frac{sh_i - p_{sh,i,\omega}}{\varepsilon_{sh,i,\omega}}\right)^2\right]$$

Then we sum the conditional ‘probabilities’ for all arrivals

$$F_\omega = \sum_{i=1}^{NA} P(A_i | E_\omega)$$

This is a measure of the ‘fitness’ of E_ω . Because it is a sum over the arrivals, it will grow if many arrivals have high conditional probability, i.e, ‘agree’ that E_ω occurred. But F_ω will not be diminished by arrivals that have low conditional probability.

PEDAL

Redefine ω to span only 3D space, independent of time. For all events E_ω , $(T_i - T_j)$ observed at two stations S_i and S_j is independent of event origin time. This is because $p_{T,i,\omega} = T_o + p_{t,i,\omega}$ and $p_{T,j,\omega} = T_o + p_{t,j,\omega}$ so $p_{T,i,\omega} - p_{T,j,\omega} = p_{t,i,\omega} - p_{t,j,\omega}$

$$P(A_i \cap A_j | E_\omega) = \exp \left[- \frac{((T_i - T_j) - (p_{t,i,\omega} - p_{t,j,\omega}))^2}{\epsilon_{t,i,\omega}^2 + \epsilon_{t,j,\omega}^2} \right]$$

$$- \left(\frac{az_i - p_{az,i,\omega}}{\epsilon_{az,i,\omega}} \right)^2 - \left(\frac{az_j - p_{az,j,\omega}}{\epsilon_{az,j,\omega}} \right)^2$$

$$- \left(\frac{sh_i - p_{sh,i,\omega}}{\epsilon_{sh,i,\omega}} \right)^2 - \left(\frac{sh_j - p_{sh,j,\omega}}{\epsilon_{sh,j,\omega}} \right)^2 \right]$$

where subscripts t refer to travel time and T to arrival time. T_o is origin time.

PEDAL

Now we sum the conditional probabilities of all pairs of arrivals

$$F_{\omega} = \sum_{i=1}^{NA-1} \sum_{j=i+1}^{NA} P(A_i \cap A_j \mid E_{\omega})$$

We search 3D space for points with high F_{ω} followed by a search of the time axis for an origin time, T_0 , with high fitness.

$$F_{\omega, T_0} = \sum_{i=1}^{NA} \exp \left[- \left(\frac{(T_i - T_0) - p_{t,i,\omega}}{\mathcal{E}_{t,i,\omega}} \right)^2 - \left(\frac{az_i - p_{az,i,\omega}}{\mathcal{E}_{az,i,\omega}} \right)^2 - \left(\frac{sh_i - p_{sh,i,\omega}}{\mathcal{E}_{sh,i,\omega}} \right)^2 \right]$$

PEDAL

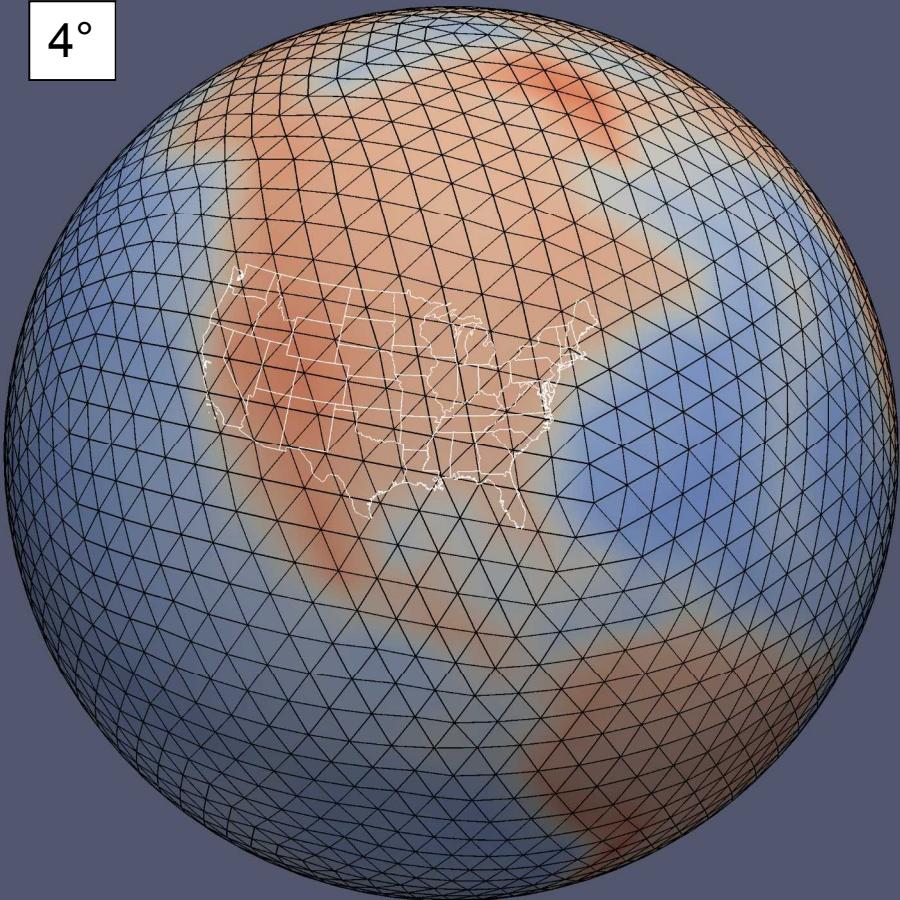
We will then empirically search for a threshold value of F_ω such that we can assert with 95% confidence that the set of arrivals A , are consistent with an event having occurred at ω . This will be the conditional probability of the observations given the event, $P(A|E_\omega)$.

What we really want to know, however, is $P(E_\omega|A)$, the probability of an event having occurred at ω given the observed arrivals. To find this we apply Bayes Theorem:

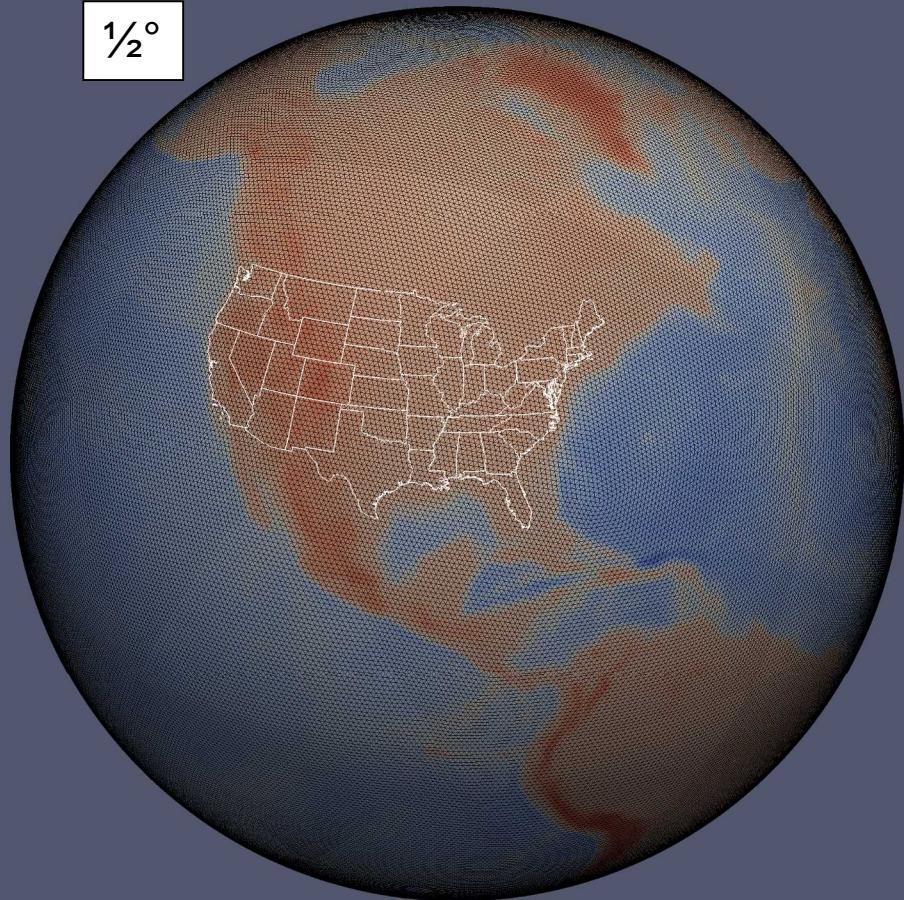
$$\begin{aligned} P(E_\omega | A) &= \frac{P(A | E_\omega)P(E_\omega)}{P(A)} \\ &= \frac{P(A | E_\omega)P(E_\omega)}{P(A | E_\omega)P(E_\omega) + P(A | !E_\omega)P(!E_\omega)} \end{aligned}$$

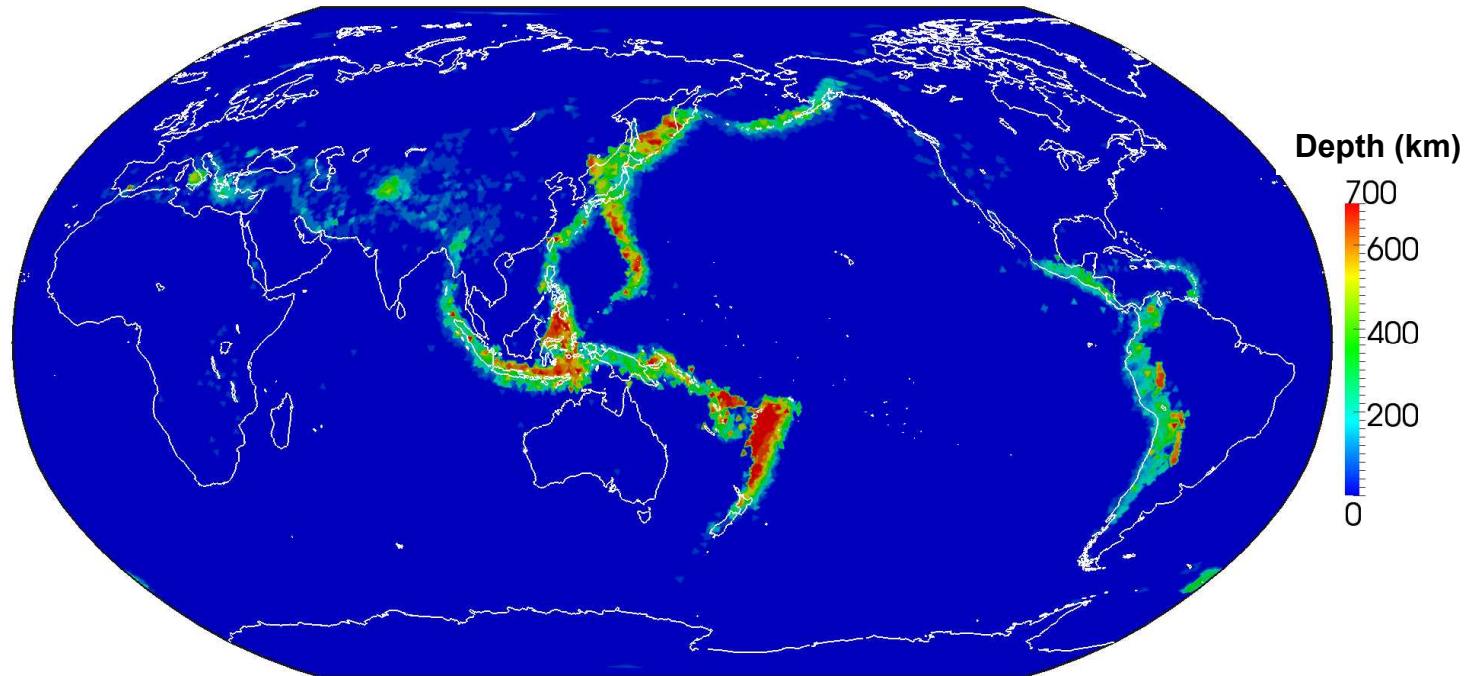
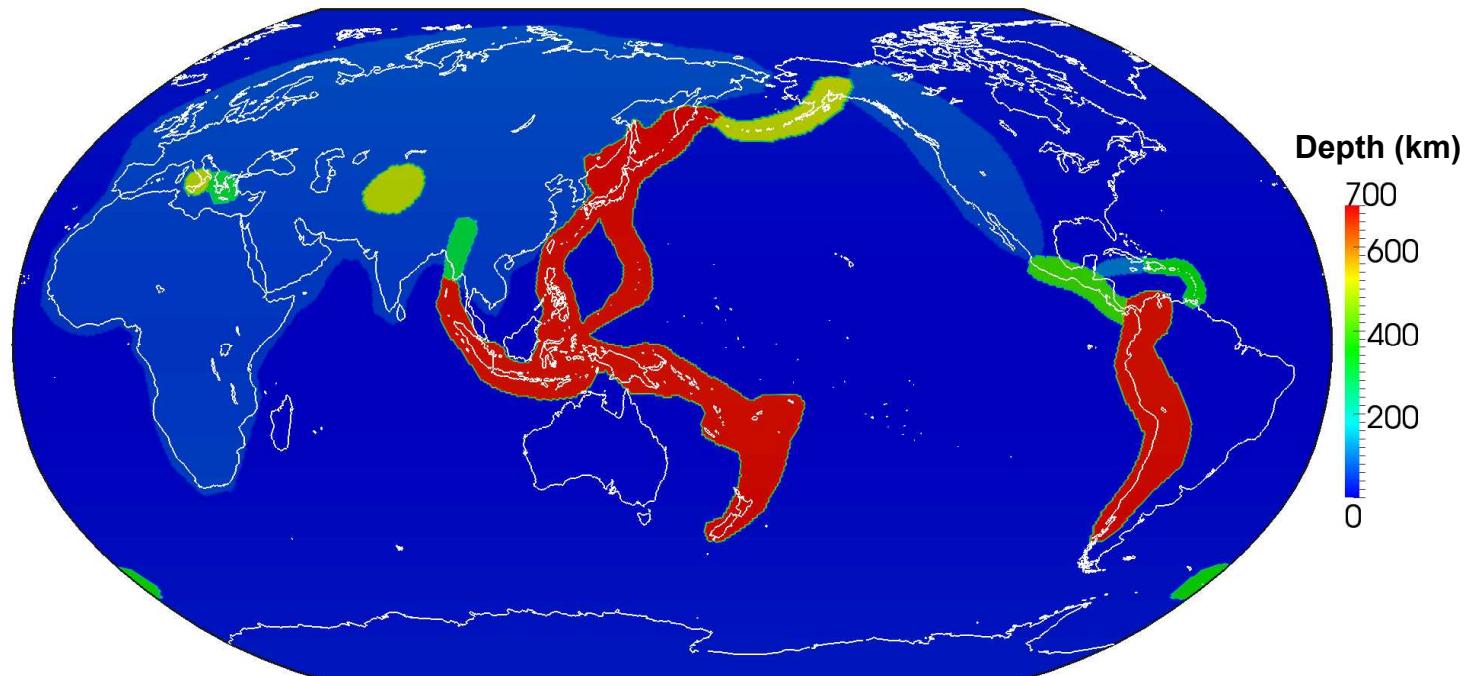
Grids

4°



1/2°





PEDAL

$$F_{\omega} = \sum_{i=1}^{NA-1} \sum_{j=i+1}^{NA} \exp \left[- \frac{\left((T_i - T_j) - (p_{t,i,\omega} - p_{t,j,\omega}) \right)^2}{\epsilon_{t,i,\omega}^2 + \epsilon_{t,j,\omega}^2} - \left(\frac{az_i - p_{az,i,\omega}}{\epsilon_{az,i,\omega}} \right)^2 - \left(\frac{az_j - p_{az,j,\omega}}{\epsilon_{az,j,\omega}} \right)^2 - \left(\frac{sh_i - p_{sh,i,\omega}}{\epsilon_{sh,i,\omega}} \right)^2 - \left(\frac{sh_j - p_{sh,j,\omega}}{\epsilon_{sh,j,\omega}} \right)^2 \right]$$

Predictions and tolerance values at ~400K nodes for each of ~150 stations requires ~1.3 GB RAM.

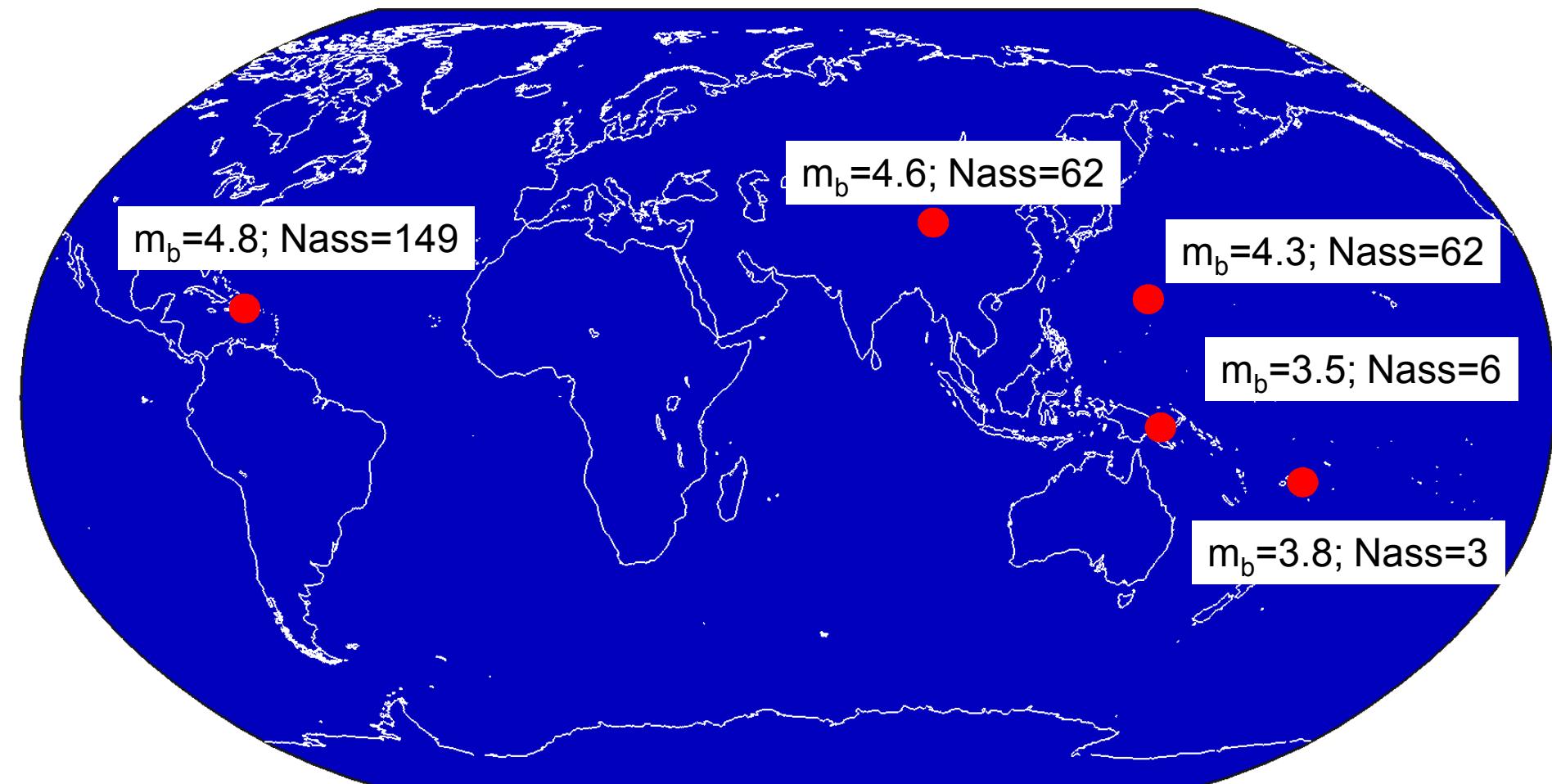
Equation is $O(n^2)$ where n is number of arrivals.

Must evaluate $\exp()$ billions of times.

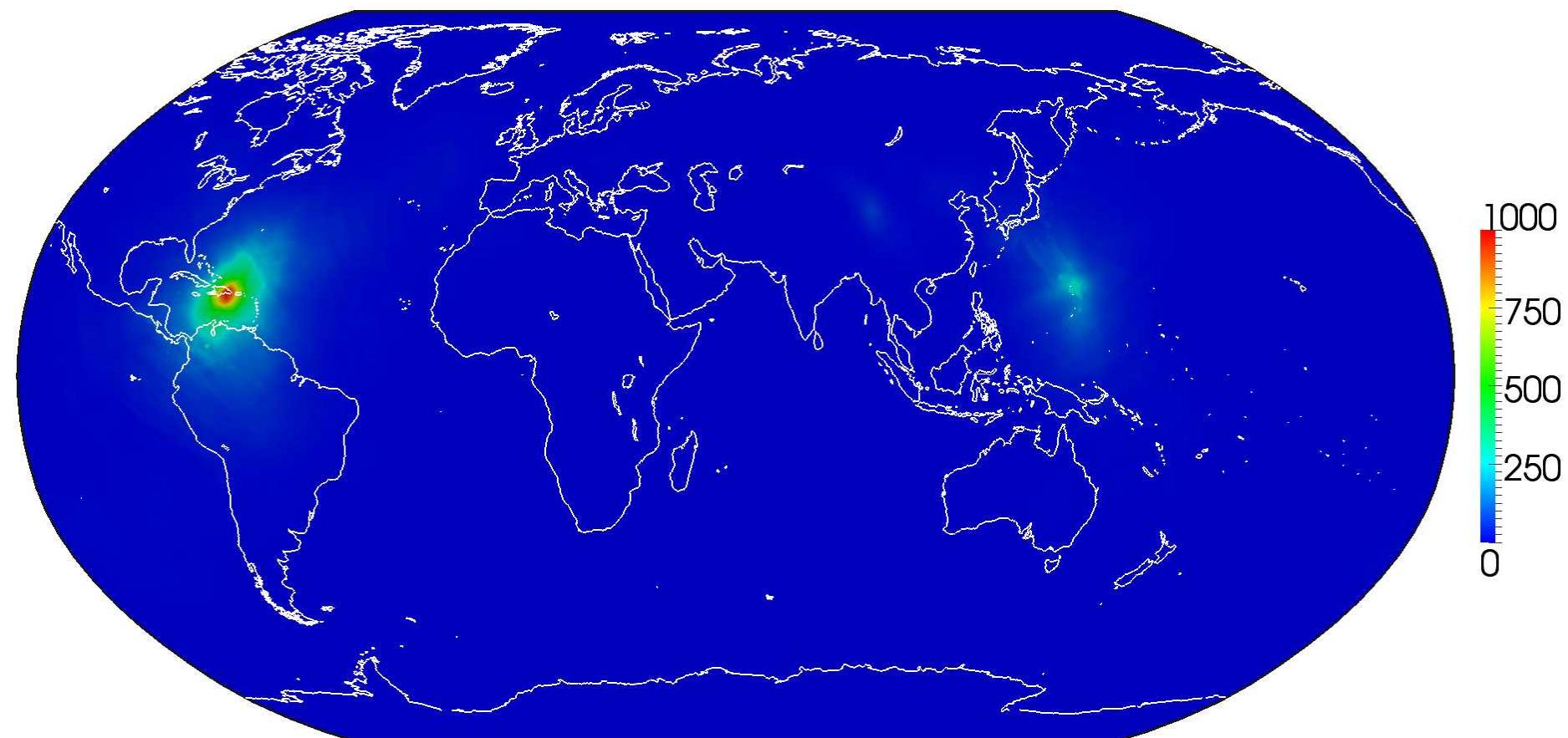
Parallelize on GPUs.

30 minute time window on 12/18/2008.

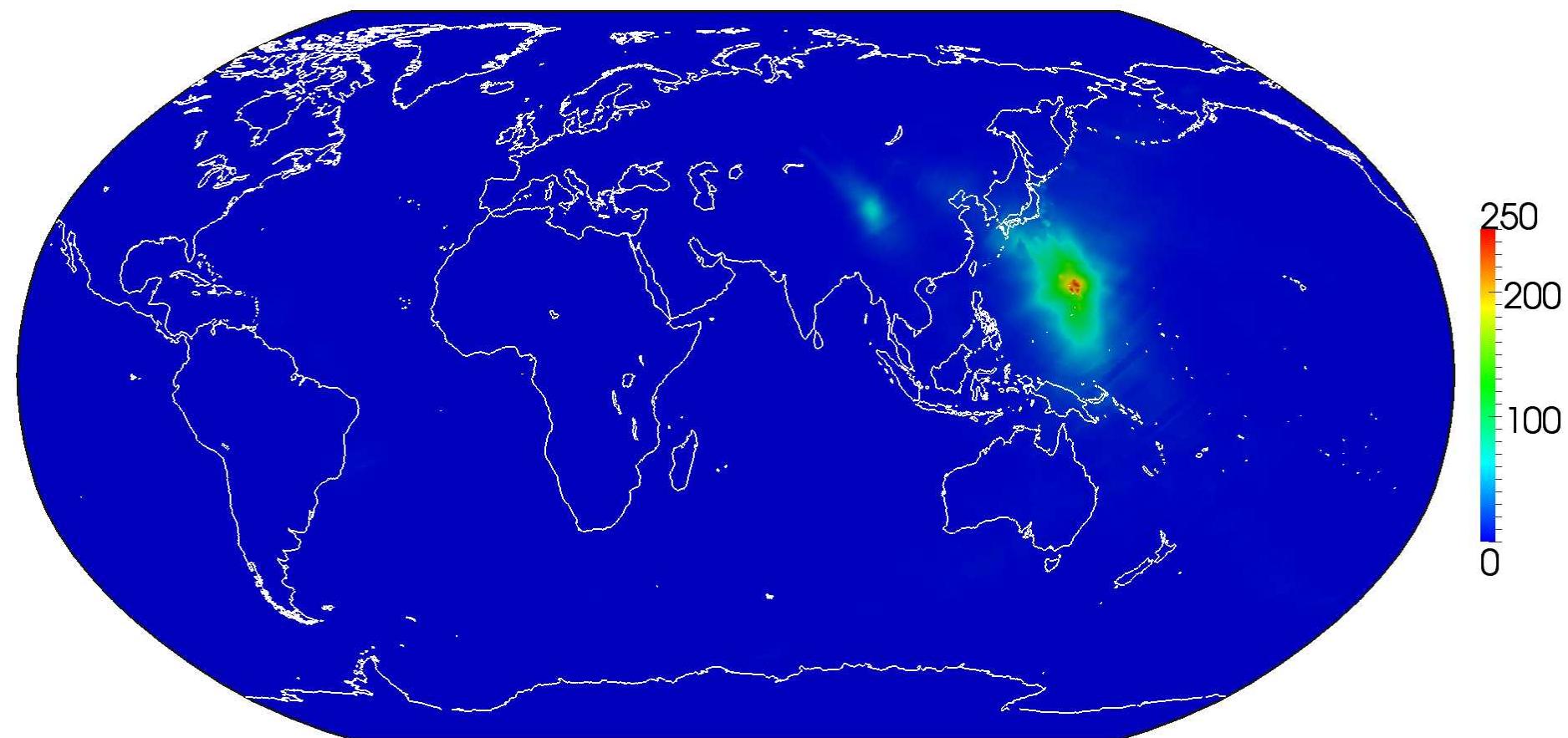
5 Known events; 560 automatically picked arrivals.



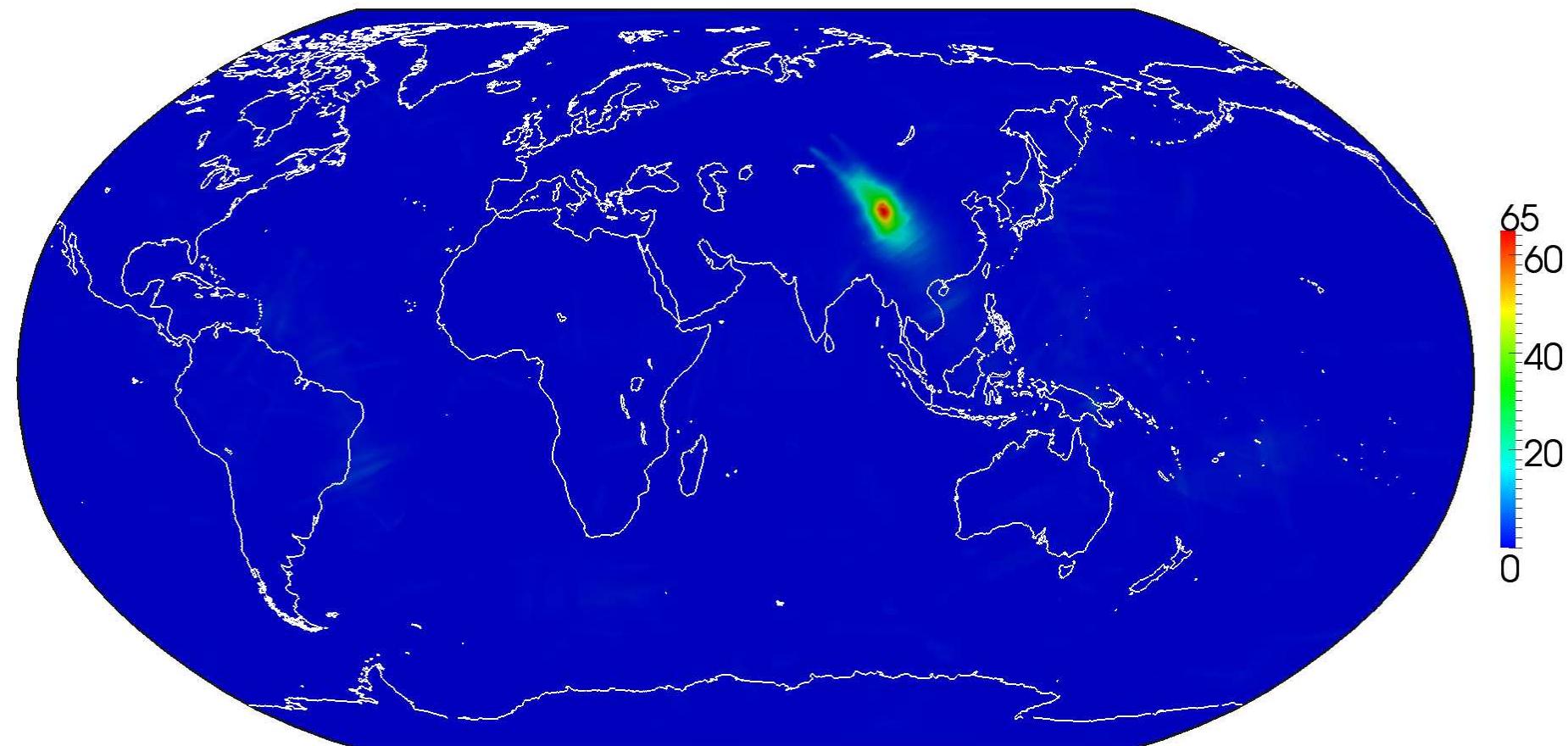
Magnitude 4.8 in Dominican Republic. 220 / 560 arrivals



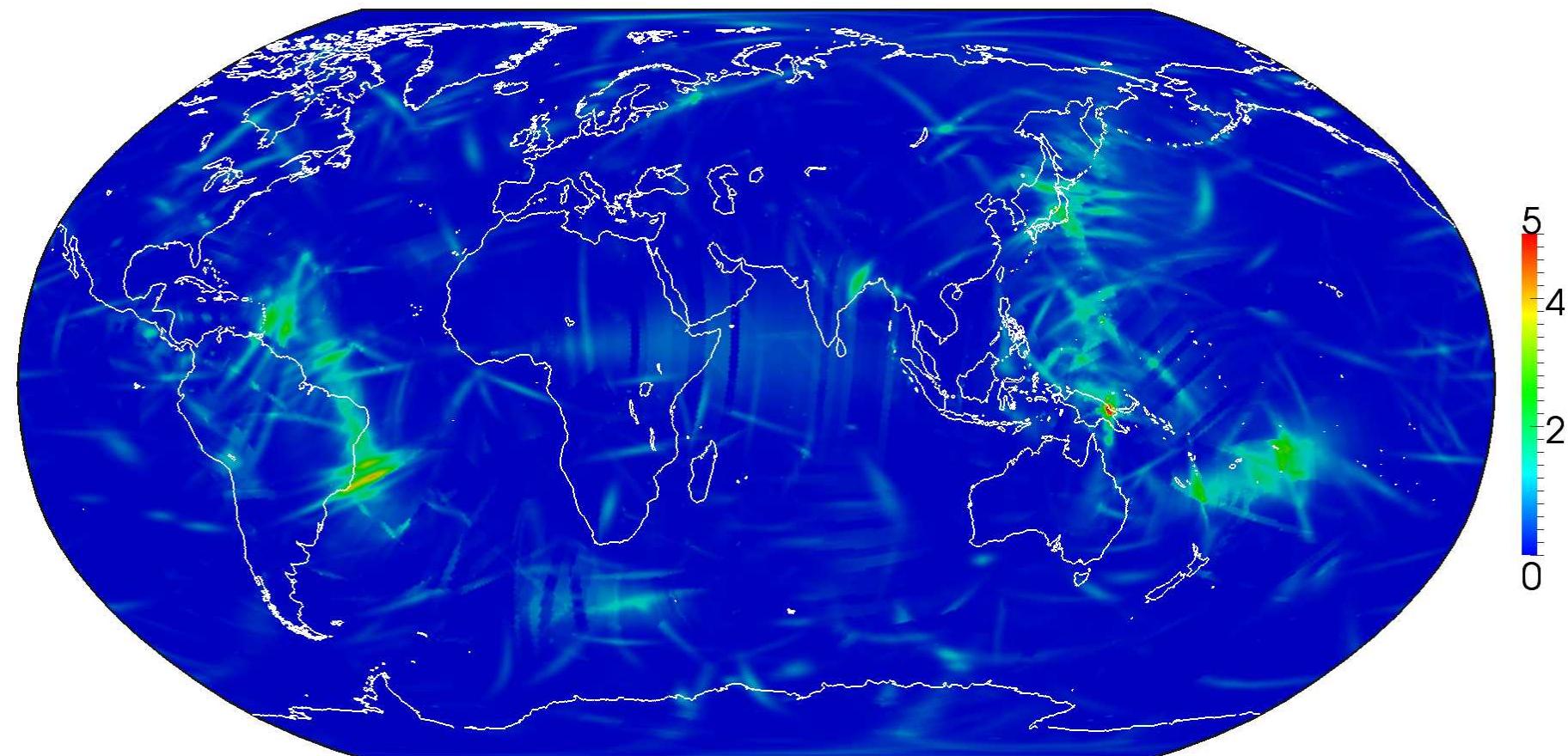
4 minutes later, magnitude 4.3 in Mariana Trench. 77 / 340 arrivals



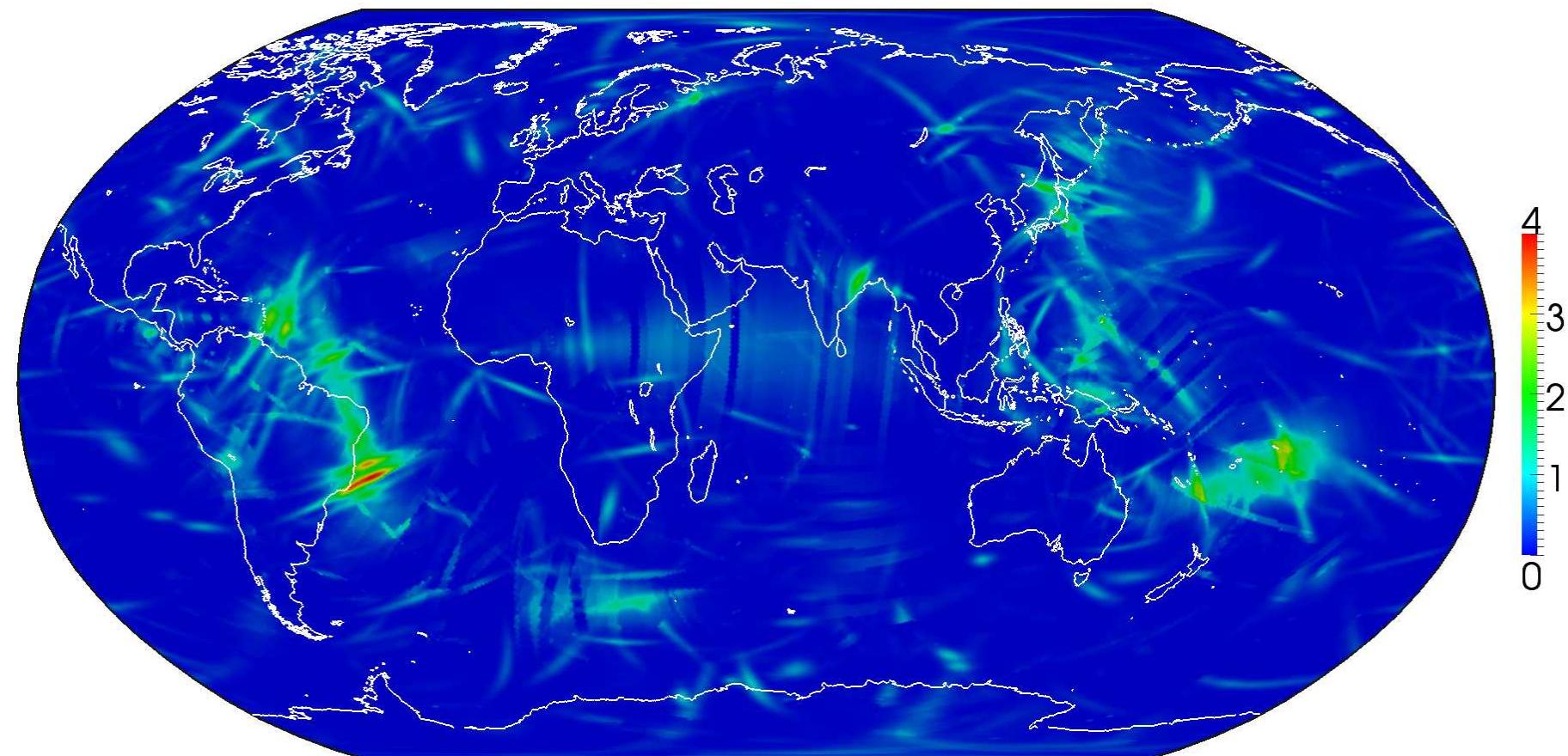
24 minutes, magnitude 4.6 in China. 21 of 263 arrivals



17 minutes, magnitude 3.5 near Papua New Guinea. 12 of 242 arrivals



Missed 3-station event near Fiji. Found spurious event near Brazil.



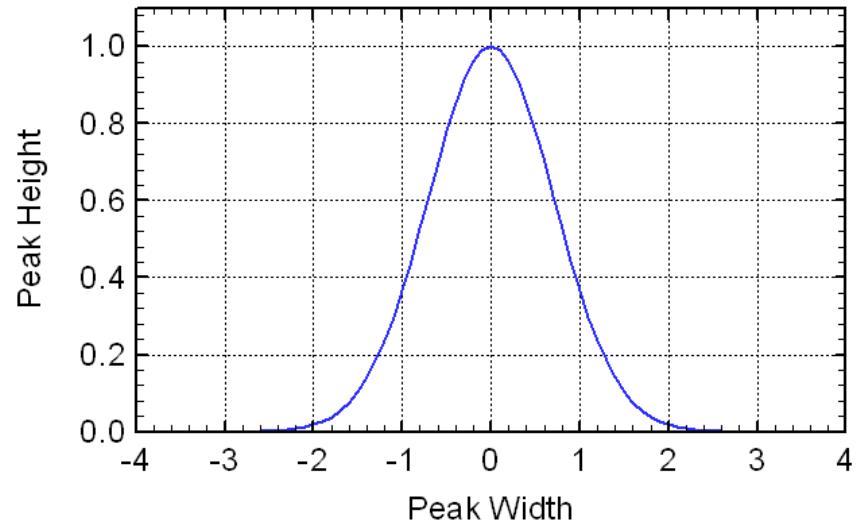
PEDAL

- We are developing a new signal association algorithm
- Exhaustive search of 4D parameter space for locations with maximum 'fitness' assuming all arrivals are P
- Association of arrivals to locations of maximum fitness
 - Empirical expected values and tolerances
 - Using list of secondary phases
- Computational demand addressed by use of GPUs
- Preliminary results are promising.
 - Need to test with much more data
- Need to assess:
 - Performance relative to IDC LEB
 - Ability to keep up with real time monitoring networks even during aftershock sequences.

PEDAL

Consider a single arrival A_i , and a single 4D position ω , in space-time. The conditional ‘probability’ that a seismic event, E_ω , occurred at ω , and generated arrival A_i with arrival time T_i , is given by

$$P(T_i | E_\omega) = \exp \left[- \left(\frac{T_i - o_\omega - p_{T,i,\omega}}{\varepsilon_{T,i,\omega}} \right)^2 \right]$$



where

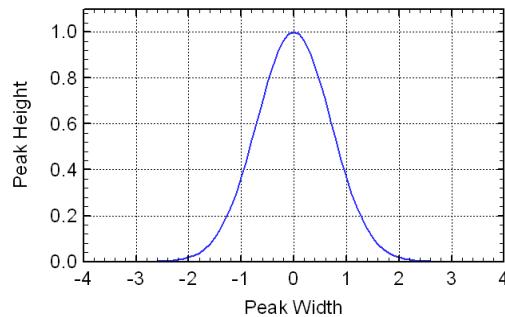
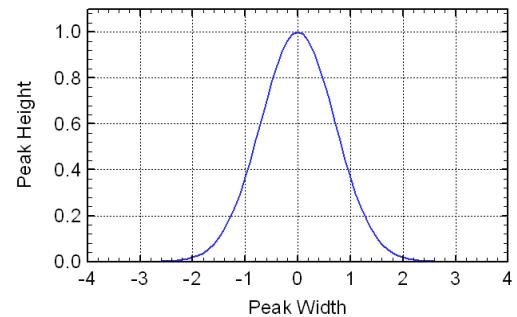
o_ω is the origin time of event E_ω

$p_{T,i,\omega}$ is a prediction of the travel time and

$\varepsilon_{T,i,\omega}$ is a tolerance value.

PEDAL

$$P(A_i | E_\omega) = \exp \left[- \left(\frac{T_i - o_\omega - p_{T,i,\omega}}{\varepsilon_{T,i,\omega}} \right)^2 \right] \bullet \exp \left[- \left(\frac{az_i - p_{az,i,\omega}}{\varepsilon_{az,i,\omega}} \right)^2 \right] \bullet \exp \left[- \left(\frac{sh_i - p_{sh,i,\omega}}{\varepsilon_{sh,i,\omega}} \right)^2 \right]$$

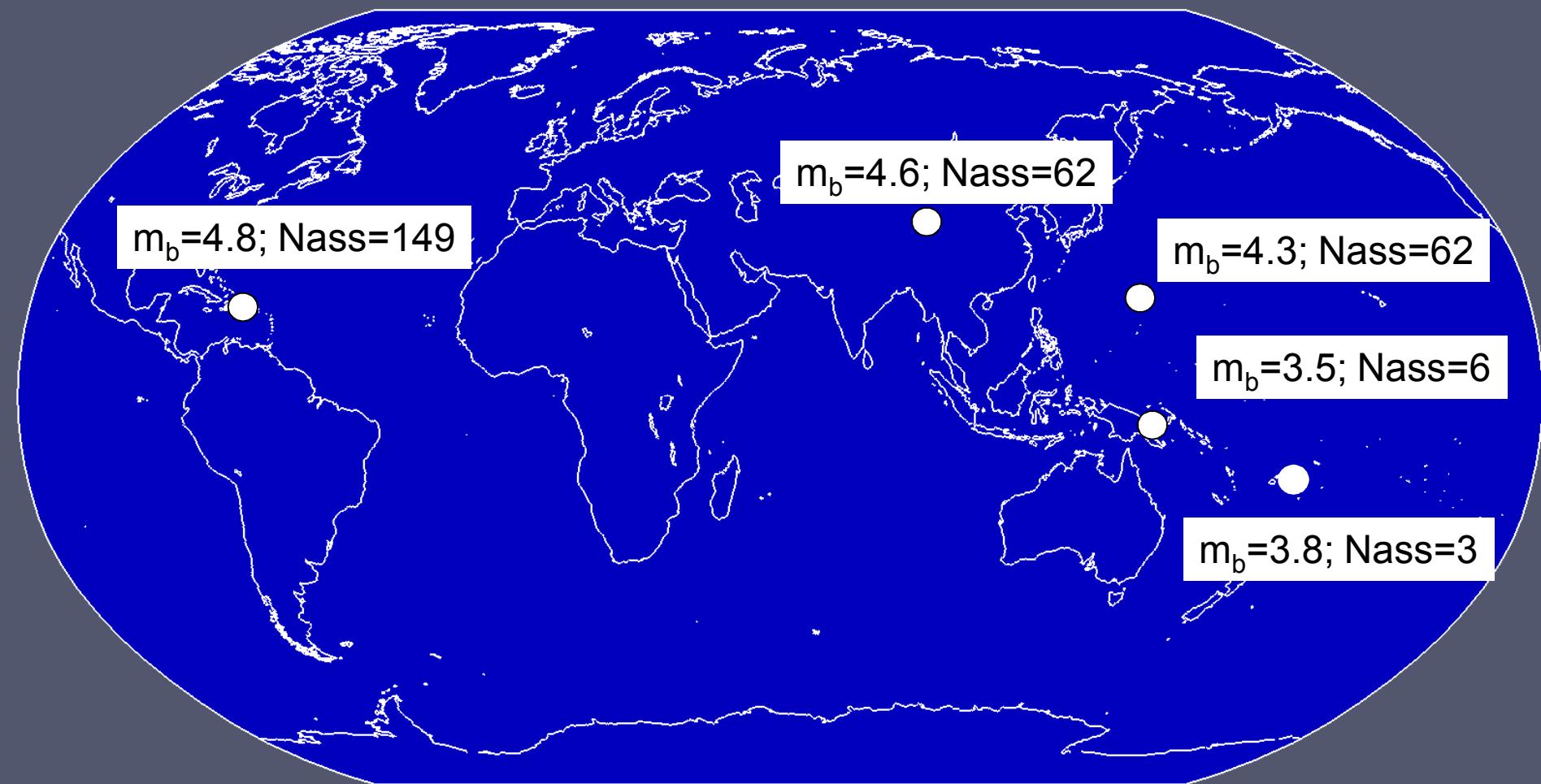


Fitness at point ω = Sum of Gaussians over all arrivals

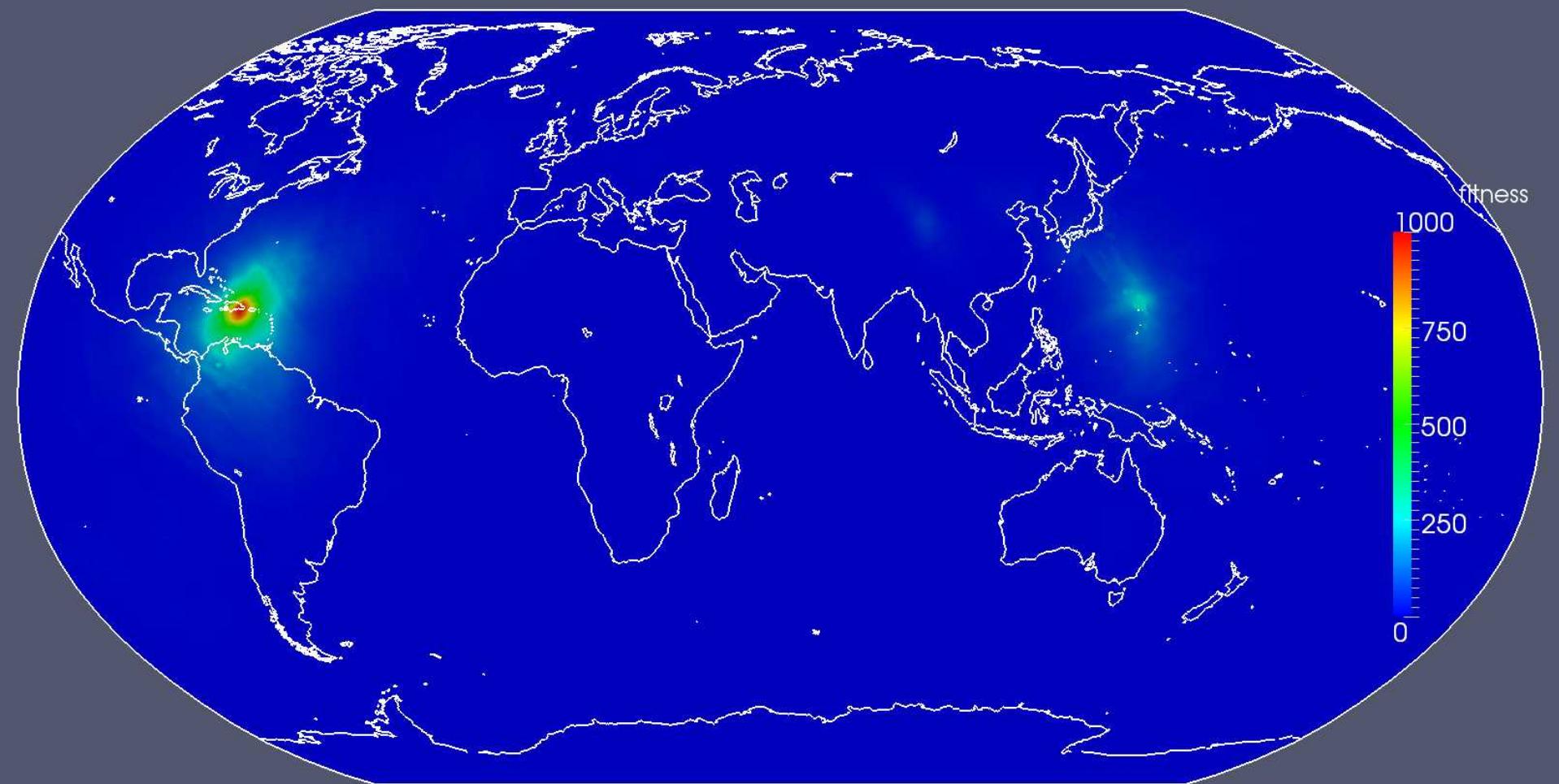
$$F_\omega = \sum_{i=1}^{NA} P(A_i | E_\omega)$$

30 minute time window on 12/18/2008.

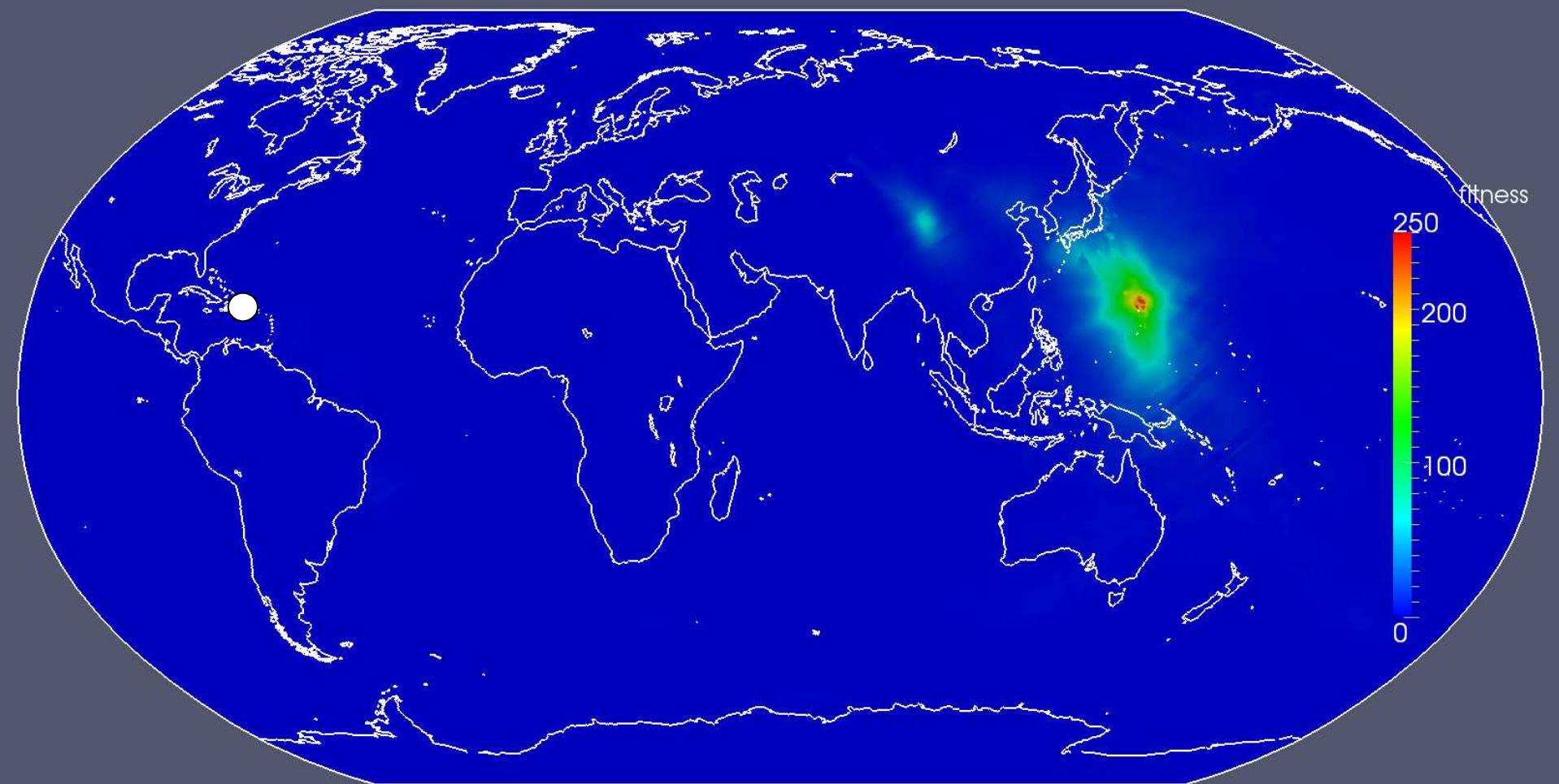
5 Known events; 560 automatically picked arrivals.



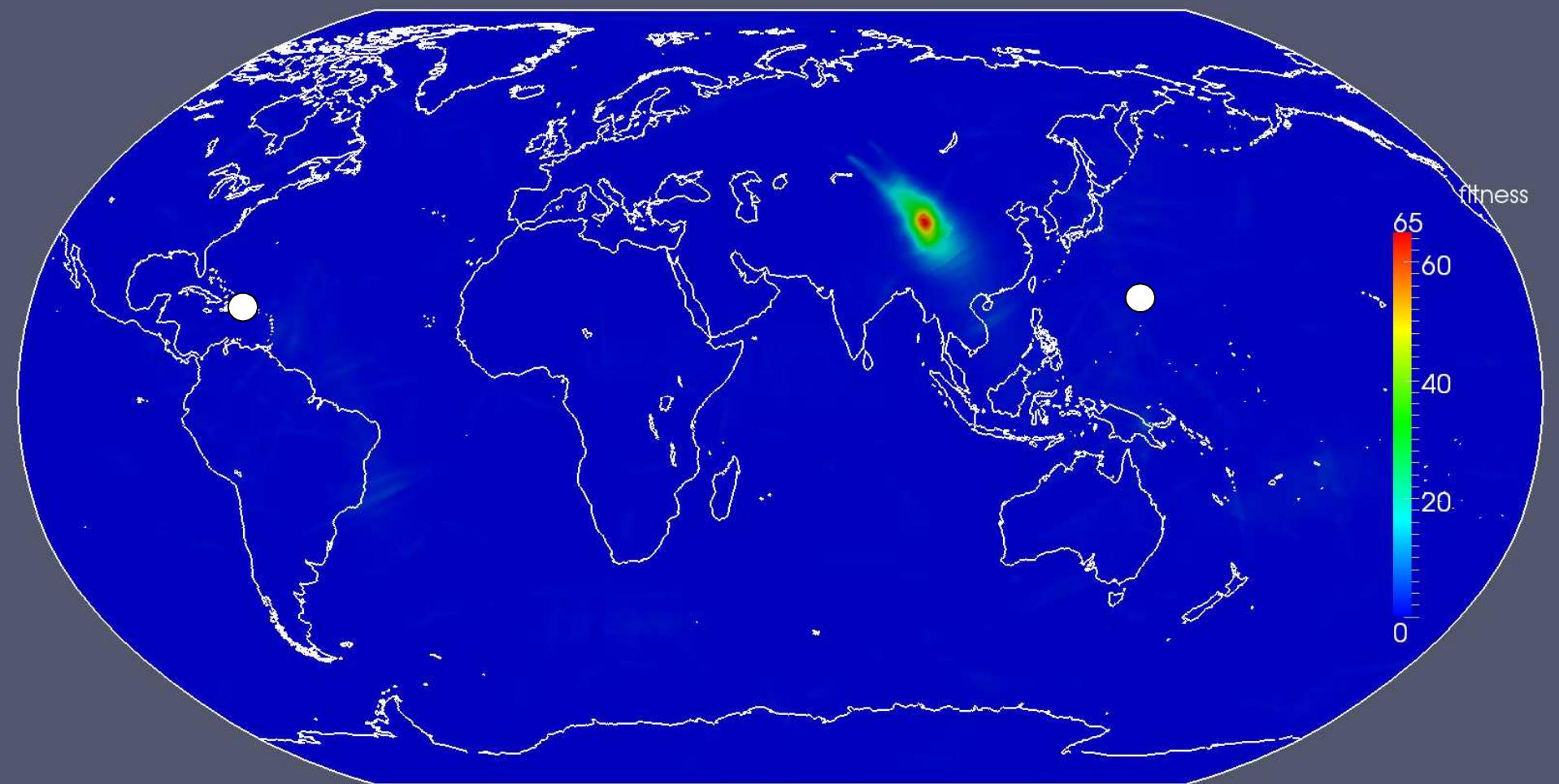
Magnitude 4.8 in Dominican Republic. 220 / 560 arrivals



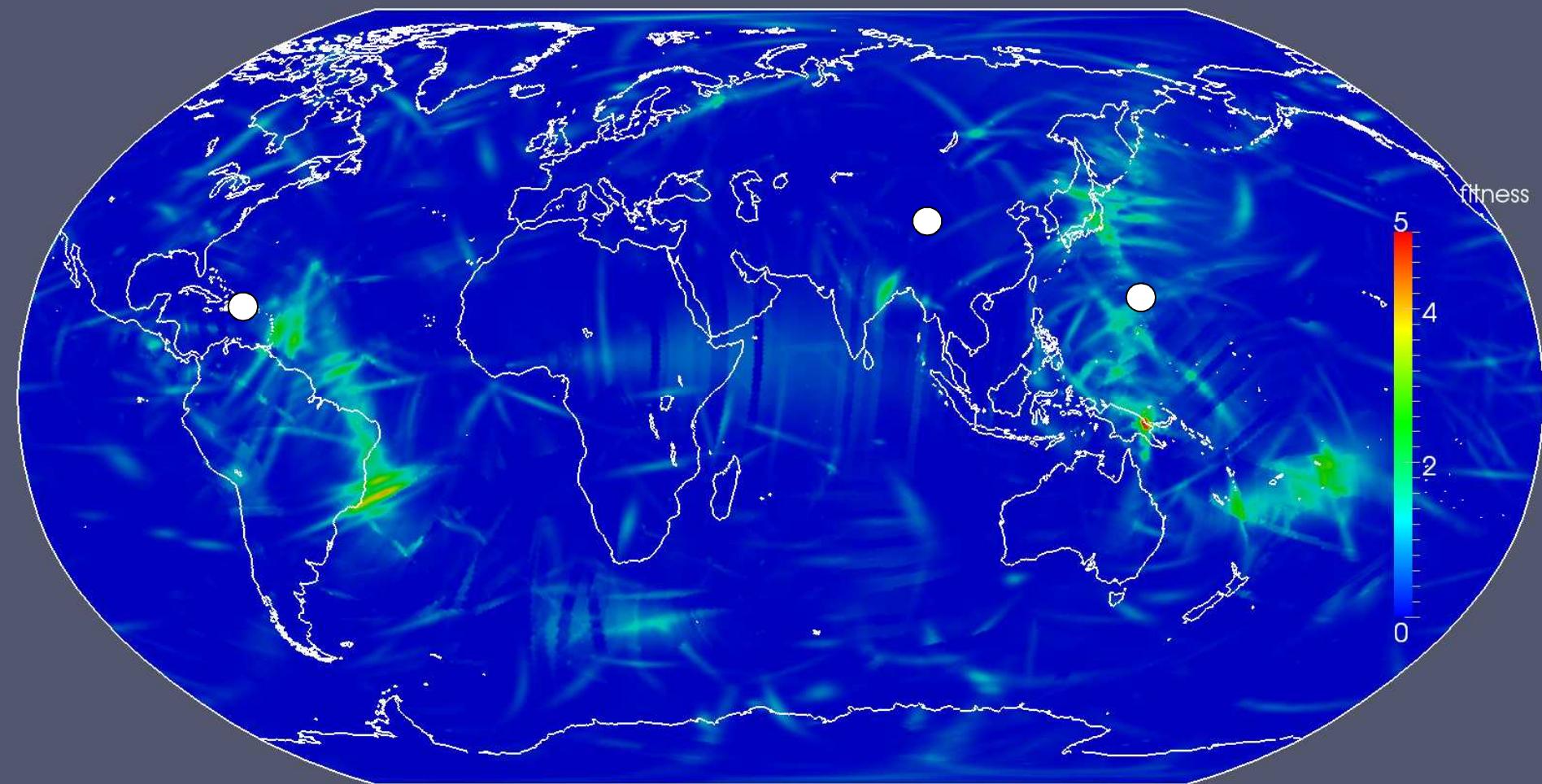
4 minutes later, magnitude 4.3 in Mariana Trench. 77 / 340 arrivals



24 minutes, magnitude 4.6 in China. 21 of 263 arrivals



17 minutes, magnitude 3.5 near Papua New Guinea. 12 of 242 arrivals



Missed 3-station event near Fiji. Found spurious event near Brazil.

