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Abstract— We explore the application of computational
singular perturbation (CSP) to analyze the stochastic dy-
namics of an idealized, stiff, 3-component chemical system,
characterized by a single small parameter . Attention is
focused on the dynamics of the system under uncertain
stiffness paramater, ¢, and uncertain initial conditions. Poly-
nomial chaos (PC) expansions are used to represent stochas-
tic quantities, and the stochastic dynamics are described in
terms of the Galerkin form of the PC reformulated system.
The Galerkin form of the Jacobian of the PC reformulated
system is also obtained, based on re-using the known form of
the deterministic system Jacobian. A stochastic CSP frame-
work is developed based on an analysis of the stochastic
eigenvalue problem. Specifically, we seek an efficient, com-
pact representation of the stochastic eigenvectors in terms
of a linear combination of the eigenvectors of a nominal
deterministic system. Two approaches are used to determine
the stochastic coefficients in this non-orthonormal basis,
based on non-intrusive spectral projections, or on a residual
minimization technique. Computational tests indicate that
both approaches result in suitable representations of the
stochastic eigenvectors which are in close agreement with
each other. The stochastic eigenvector representation is then
exploited to conduct a CSP reduction of the chemical system.
For systems involving small or moderate input uncertainty
levels, computational experiments indicate that the resulting
stochastic CSP formalism provides an effective means of
dimension reduction, and accordingly leads to significant
speedup in the integration of the stochastic dynamics.

I. INTRODUCTION

The equations of motion of reacting flows are fre-
quently stiff, primarily due to the large spectrum of
timescales that characterize individual reactions. It is by
now well established that efficient simulation of such
systems can tremendously benefit from methods that can
address the stiffness of the governing equations and/or
reduce the dimension of the system being modeled. In
particular, CSP [1], [2], [3] has been found to be an
effective tool in identifying disparate chemical timescales,
and where appropriate formulating reduced models and/or
substantially enhacing integration efficiency.

In this work, we explore the application of CSP to
simplified, stiff, stochastic chemical system. We focus
specifically on the case of a purely reactive system with
uncertain rate parameters and initial conditions. A spectral
approach to uncertainty quantification is adopted, based
on the use of polynomial chaos (PC) expansions. As
outlined [4], these essentially amount to approximating
random variables in terms of a linear combination of
orthogonal basis functions. The coefficients in expansion

can then be determined based on suitable discrete pro-
jections or an a weighted residual formalism. We shall
specifically focus on the latter approach, which leads to
a reformulated system of coupled ordinary differential
equations (ODEs) that govern the evolution of the ex-
pansion coefficients.

Though CSP may be directly applied to the reformu-
lated stochastic chemical system, an alternative method-
ology is explored in Section II based on an analysis of
the Jacobian of the reformulated system. Specifically, we
exploit the known structure of this Jacobian to construct
a spectral representation of eigenvalues and eigenvectors
in the original solution space. A compact representation
of the stochastic eigenvectors is then constructed in terms
of a linear combination of the eigenvectors of a nominal
deterministic system. The coefficients in the correspond-
ing expansions are determined based on non-intrusive
spectral projections [4], or on a residual minimization
technique [5].

The availability of spectral representations of stochastic
eigenvalues and eigenvectors in the form outlined above is
exploited to construct a stochastic CSP reduction method-
ology that is especially geared exploring conditions un-
der which a deterministic reduced model remains valid
under uncertainty. Thus, this CSP methodology specif-
ically identifies situations when stochastic eigenvectors
associated with a nominal deterministic direction can all
be considered exhausted. Application of this formalism is
briefly illustrated in Section III using a three-dimensional,
stiff, chemical system [2].

II. APPROACH

Development of the methodology outlined above is il-
lustrated for the simple case of a non-linear, stiff chemical
system governing the evolution of three species [3]:
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where y;, ¢ = 1,..., N denote the vector of concen-

trations (N = 3 presently), and ¢ < 1 is a “stifness”
parameter. A stochastic variant of the above deterministic
system is considered, in which the inverse of the stiffness
parameter and the initial concentrations are modelled as



uniformly distributed random variables with known mean
and range. Specifically, they are expressed as y;(0) =
pi+ai,i=1,...,N,and e ! = ;' + as&y, where
&,1=1,...,4 are independent random variables that are
uniformly distributed in [—1, 1].

The dynamics of the resulting stochastic chemical sys-
tem are described in terms of a truncated PC expansion:
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where the Uy are orthogonal multidimensional Legendre
polynomials, & = (&1,&2,&3,&4)T is the vector of in-
dependent random variables, and P + 1 is the number
of polynomials of order < p, and y¥(¢), i = 1,..., N,
k =0,..., P are deterministic coefficients. To describe
the evolution of the stochasic solution, it is sufficient
determine the evolution of the deterministic coefficients,
y¥. A Galerkin procedure is used for this purpose, based
on inserting (2) into (2), and projecting onto the PC basis.
This leads into a reformulated system of the form:

gF =G¥ 3)

where GF is a nonlinear source terms that is function of
all the coefficients.

Straightforward differentitation of the source term
in (3) results in a stochastic Jacobian of the form jj;l .
Following [5], this matrix is stored in 2-index form
Jriky{jiy using the convention {ik} = i = i + kN.
Thus, J acts on N(P + 1) dimensional vectors, which
consist of P+ 1 N-dimensional column vectors arranged
consecutively.

While the CSP formalism may be directly applied using
J, an alternative approach is developed based on relating
J to the N x N Jacobian J;;(&§) that corresponds a
specific realization of the £. Applying the appropriate
Gateaux derivatives to the stochastic source term, Gf, one
can show that the Jacobian J;; has PC representation:

P

Tij(€) = > T k() “

k=0

which provides a direct connection between J and 7.

The PC expansion of the Jacobian (4) may be readily
exploited to construct PC representations of the eigenval-
ues and eigenvectors of the stochastic chemical system.
We have explored two approaches for this purpose. The
first is based on non-intrusive spectral projection, based on
deterministic sampling of a fully-tensored Gauss quadra-
ture formula, whereas the second is based on an extension
of the residual minimization formalism of Ghanem &
Gosh [5]. Both approaches lead to suitable representations
of the form:
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In the implementations below, we focus on a simplified
setting in which the nominal system corresponding to § =
0 has linearly independent (normalized) eigenvectors, V';,
1 =1,...,3. We exploit this assumption by re-expressing
the stochastic eigenvectors in terms of this generally non-
orthogonal basis, namely according to:
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where gf is the coefficient of the ¢-th eigenvector, u;,
“along” the k-the nominal eigenvector. Note that the
g¥ (&) are (non-orthogonal) polynomials in & of order < p.

III. ILLUSTRATIONS

One of the advantages of the representations (5) and (7)
is that they directly enable us to quantify the dependence
of the eigenvalues and the orientation of normalized
eigenvectors on the germ £. Figure 1 shows PDFs of the
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Fig. 1. PDFs of |\;| at¢ = 0, ¢ = 1,...,3. Plotted are curves
expansion orders p = 1 (blue), p = 2 (green), and p = 3 (red). Results
are obtained with p; = 0.5, a; = 0.2, ¢ = 1,...,3, ¢¢ = 0.01,
ay = 10.

eigenvalues for the stochastic system at ¢ = 0. The results
indicate good agreement between first, second, and third-
order PC expansions, and that for the present example



the eigenvalues remain well separated despite the large
variability associated with the stochastic inputs.

To quantify the response of the normalized eigenvectors
on & we compute the spectra of the cosines between
u;(€) and the nominal eigenvector V ;. Specifically, we
set cos(¢;) = u;(€)-V,, and plot in Fig. 2 the PC spectra
of cos(¢;) at time ¢t = 0. The spectra clearly indicate that
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Fig. 2. PC spectra of cos(¢;) at t = 0, for ¢« = 1,...,3, arranged
from top. Plotted are curved obtained with residual minimization (green)
NISP (blue). Same parameters as in Fig. 1.

the amplitude of the zeroth mode is near unity, and that
this mode is several orders of magnitude larger than the
remaining modes. Thus, for this system, uncertainty in
initial conditions and stiffness parameter do not result
in large variation in the orientation of the normalized
eigenvectors.

Examination of the dynamics of the present stochastic
system (not shown) also indicates that the stochastic
eigenvectors remain weakly sensitive to £ at later times
as well. Thus, for the present system, CSP reduction of
the dynamics may be conducted using either the nominal
eigenvectors or the stochastic eigenvectors as represented
in (7). Both approaches have been attempted, based on

the use of a simplified stochastic exhaustion criterion,
and in both cases nearly identical results were obtained.
A sample of this exercise is shown in Fig. 3, which
depicts the evolution of selected modes of the solution.
The results in Fig. 3 are consistent with the analysis
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Fig. 3. Evolution of PC modes 0, 7, and 14. Plotted are curves for y1
(blue), y2 (green) and y3 (red), obtained using fine-step integration of
(3) and with CSP acceleration (dash). Same parameters as in Fig. 1.

in Ref. [3], the present system is attracted towards the
deterministic equilibrium, y; = 1,7 =1, ..., 3, regardless
of the initial condition and of the stiffness parameters.
They also indicate a close agreement between direct and
CSP-accelerated integration. For the present application,
CSP integration of (3) with p = 3 leads to about a 50-
fold speed up when nominal eigenvectors are used, and
about a 35-fold speed when the stochastic eigenvector
representation is used.
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