
Hybrid algorithms in quantum Monte Carlo

Jeongnim Kim
National Center for

Supercomputing Applications
University of Illinois at
Urbana-Champaign

Urbana, IL, US
jnkim@illinois.edu

Kenneth P. Esler
∗

National Center for
Supercomputing Applications

University of Illinois at
Urbana-Champaign

Urbana, IL, US
esler@uiuc.edu

Jeremy McMinis
Department of Physics
University of Illinois at
Urbana-Champaign

Urbana, IL, US
mcminis2@illinois.edu

Miguel A. Morales
Lawrence Livermore National

Laboratory
Livermore, CA, US

moralessilva2@llnl.gov

Bryan K Clark
The Princeton Center for

Theoretical Science
Princeton University
Princeton, NJ, US

bclark@princeton.edu

Luke Shulenburger
Sandia National Laboratories

Albuquerque, NM, US
lshulen@sandia.gov

ABSTRACT
With advances in algorithms and growing computing pow-
ers, quantum Monte Carlo (QMC) methods have become a
leading contender for high accuracy calculations for the elec-
tronic structure of realistic systems. The performance gain
on recent HPC systems is largely driven by increasing par-
allelism: the number of compute cores of a SMP has been
going up as well as the number of SMPs, as the Top500 list
attests. However, the available memory and memory and
communication bandwidth per element has not kept pace
with the increasing parallelism. This severely limits the
applicability of QMC and the problem size it can handle.
OpenMP/MPI hybrid programming provides applications
with simple but effective solutions to overcome efficiency
and scalability bottlenecks on large-scale clusters based on
multi/many-core SMPs. We discuss the design and imple-
mentation of hybrid methods in QMCPACK and analyze
its performance on current HPC platforms characterized by
various memory and communication hierarchies.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Physics; D.1.3
[Programming Techniques]: Concurrent Programming;
D.2.11 [Software Architectures]: Domain-specific archi-
tectures, Patterns

General Terms
Application

∗Current address: Stone Ridge Technology, Bel Air, MD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
applications, computational physics, materials

1. INTRODUCTION
Continuum quantum Monte Carlo (QMC) methods em-

ploy explicitly correlated wave functions to describe the many-
body effects and symmetries in an efficient and compact
manner and solve the Schrödinger equation by a stochas-
tic process [1]. QMC is one of the most accurate ab initio
methods to describe the behavior and properties of quan-
tum many-particle systems. It is general and applicable to
a wide range of physical and chemical systems in any di-
mension, boundary conditions etc. The favorable scaling,
3-4 power of the problem size, and ample opportunities for
parallelizations, e.g., over multiple Bloch k-vectors, make
QMC methods uniquely powerful tools to study the elec-
tronic structure of realistic systems on large-scale parallel
computers.

The objects in QMC algorithms can be divided into two
categories: i) ensemble data to represent the physical enti-
ties like trial wave functions and ii) walker data to represent
each 3N dimensional configuration and its dynamic state.
The ensemble data are large but are unmodified during a
simulation once the initialization step is completed and are
shared by all the walkers. On the other hand, the walker
data evolve as we sample the configurations using various
QMC algorithms. The simplest parallelization strategy is
distributing walkers among the tasks, while replicating the
ensemble data on each task. This fits nicely to the dis-
tributed memory model of the Message Passing Interface
(MPI) library [2].

Until recently, QMC methods have been able to exploit
the steady increase in clock rates and the enhancement of
performance enabled by advances in CMOS VLSI technol-
ogy for faster and bigger simulations without any major
changes in this parallel algorithm based on MPI. However,
this decade has seen some significant changes in the mode of
increase of computational power. The performance gain has
been largely driven by increasing parallelism in a shared-
memory processor (SMP) unit in the form of multi-core

SAND2011-2599C

processors and GPUs (Graphics Processing Units). A no-
table feature of multi/many-core architectures is relatively
constant memory per core of a few GB. This can limit the
problem size QMC can handle, if the ensemble data is repli-
cated on each core for efficiency. Recognizing that the aggre-
gated memory of each SMP node is steadily growing with the
number of cores on a processor, one can easily overcome the
memory limitation of multi-core processors by using shared-
memory programming models such as OpenMP [3].

In this article, we present hybrid QMC algorithms us-
ing OpenMP/MPI. Similar to the standard MPI implemen-
tation, we replicate the large but read-only ensemble data
on each MPI task and distribute the walkers among tasks.
OpenMP parallel constructs are used to further divide the
walkers among threads. The threads and objects are care-
fully managed to minimize OpenMP overhead and false shar-
ing, while maximizing data locality and cache reuse. The
computational cost per core and the overall parallel effi-
ciency are unaffected by the additional parallelization with
OpenMP at a modest core count of a few 1000s. As we
increase the number of nodes, the hybrid methods become
more effective because of the unfavorable scaling of MPI
collectives with respect to the task count and much reduced
communication needs for the load balance. We expect that
the performance advantage of the hybrid methods will ex-
pand with increasing parallelism on newer processors.

The hybrid QMC algorithms are implemented in QMC-
PACK, an open-source QMC package designed for large-
scale parallel computers [4]. It makes extensive use of object-
oriented and generic programming and design patterns [5]
for reusability and extensibility. High computational effi-
ciency is achieved through inlined specializations of C++
templates and by using SIMD intrinsics for core kernels. It
utilizes standard file formats for input and output, using
XML standard and HDF5 [6], to streamline the QMC work-
flow and facilitate data exchange with other applications.

The rest of the paper is organized as follows. First, we
introduce QMC methods and core algorithms. We ana-
lyze critical computational components and scaling prop-
erties with problems size. In section 4, we present hybrid
algorithms using OpenMP/MPI at the walker level and de-
tail our efforts to achieve high computational and parallel
efficiency on large-scale clusters. Our on-going works to
overcome the limitations of current implementations are dis-
cussed in section 5 and the conclusions follow.

2. QMC METHODS
In quantum mechanics, all physically observable quanti-

ties for a system containing N particles can be computed
from the 3N -dimensional wave function, Ψ(r1, . . . , rN). The
exact wave function for the system satisfies the time-independent
Schrödinger equation,

ĤΨ = E0Ψ, (1)

where E0 is the ground-state energy for the system and Ĥ
is the Hamiltonian, or total energy operator. For example,
the Hamiltonian for an N -electron system is given as

Ĥ =

N∑
i=1

−1

2
∇2
i +

N∑
i=1

Vext(ri) +
∑
i<j

1

|ri − rj |
(2)

where Vext(ri) is the external potential generated by the nu-
clei, applied electric fields, etc. Since the exact solution Ψ

Generate	

samples

DMC

Converged?

VMC

no

(a) (b) DMC

Figure 1: (a) QMC workflow and (b) DMC algo-
rithm.

is known only for simple few-body systems, QMC methods
employ a trial wave function ΨT , which takes the general
form

ΨT (R) =
∏
k

ψk({α},R). (3)

Here, each component ψk is given as an analytic function of
a number of optimizable parameters {α}.

For any ΨT (R), we can compute an energy as the expected

value of Ĥ,

ET =

∫
d3NR Ψ∗T (R)ĤΨT (R)∫

d3NR |ΨT (R)|2
, (4)

where R is a 3N -dimensional vector representing the posi-
tions of the N particles. A variational principle guarantees
that ET ≥ E0 for all ΨT , which implies that the lower the
energy a given ΨT has, the closer it is to the exact solution
of the Schrödinger equation. In QMC, ET is estimated by
stochastic sampling as

ET ≈
∑M
i w(Ri)EL(Ri)∑M

i w(Ri)
, (5)

where EL is a local energy, EL(R) = ĤΨT (R)/ΨT (R) and
w weight at R.

Various algorithms have been developed to find the ground-
state solution, i) either by minimizing the energy by vary-
ing parameters in a ΨT as in the variational Monte Carlo
(VMC) method or ii) by projecting out the ground state by
repeatedly applying an imaginary time Green’s function or
propagator exp(−τĤ) on ΨT as in the diffusion Monte Carlo
(DMC) method [1]. In actual calculations, the parameters
{α} are optimized within VMC to obtain improved, yet still
compact wave functions. Once a trial wave function is op-
timized, it is further improved through a stochastic projec-
tion by DMC. This typical QMC workflow is illustrated in
Fig. 1(a).

For stochastic sampling methods, the convergence of a
simulation is determined by the standard error as

δ =
σ√
M
, (6)

for M uncorrelated samples. In VMC, all the configurations

Figure 2: Trace of the DMC energy and walker pop-
ulation during a simulation. The gray shaded region
indicates the equilibration period, during which the
data should be discarded.

are equally weighted, i.e., w = 1, and the energy variance is

σ2 =

∑M
i EL(Ri)

2

M
−

(∑M
i EL(Ri)

M

)2

= < E2
T > − < ET >

2 . (7)

The generalization for w = exp−τ(EL−ET) in DMC is straight-
forward [1]. Finally, we can define the efficiency of a QMC
simulation as

κ =
1

σ2τcorrTCPU
, (8)

where TCPU is the time to achieve a target error and Tcorr
is the auto-correlation time [7]. An accurate ΨT with small
σ and τcorr is essential to achieve high quality results with
small statistical error. Choosing a compact representation
for ΨT with a low computational cost is equally important
for efficient QMC calculations. The advantage of increas-
ing parallelism for QMC is apparent, as TCPU ∝ TMC/Np,
where TMC denotes the computational time to generate a
MC sample and Np, the number of parallel processing units.

3. QMC ALGORITHMS
The vast majority of the computational time in an accu-

rate QMC simulation is spent in DMC and therefore mini-
mizing the wall-clock time to obtain a DMC solution within
a target error is desired. The optimized computational ker-
nels, physical abstractions and parallelization schemes, how-
ever, are also applicable to all other QMC algorithms.

In the DMC algorithm (Fig. 1b), an ensemble of walkers
(population) is propagated stochastically from generation to
generation, where each walker is represented by R. In each
propagation step, the walkers are moved through position
space by a drift-diffusion process. At the end of each step,
each walker may reproduce itself, be killed, or remain un-
changed (branching process), depending on the value of EL,
the local energy at that point in space. The walkers in an
ensemble are tightly coupled through a trial energy ET and
a feedback mechanism to keep the average population at the
target 103 − 105 walkers. This leads to a fluctuating popu-
lation (Fig. 2b) and necessitates shuffling of walkers among
parallel processing units to maintain good load balance in

OrbitalBase

AS J2 J1

TrialWaveFunction1..* OrbitalBuilder

J1Builder
J2Builder

Figure 3: Composite pattern for TrialWaveFunction
ΨT . It owns a number of OrbitalBase objects which
are instantiated at runtime as defined in an input
file using the builder pattern. The derived classes,
denoted as J1, J2, and AS for ΨAS, implement the
virtual functions defined in the OrbitalBase class.

an appropriate interval.
The direct evaluation of the many-dimensional integrals of

Eq. (4) by stochastic sampling enables us to employ highly
accurate variational wave functions which can capture cru-
cial many-body effects in an efficient manner. The Slater-
Jastrow trial wave functions, commonly used in QMC ap-
plications to electronic structure, are sums of Slater deter-
minants of single-particle orbitals multiplied by a Jastrow
factor:

ΨT = exp(J1) exp(J2) · · ·
∑

CiD
↑
i (φ)D↓i (φ)︸ ︷︷ ︸

ΨAS

, (9)

with N = N↑ + N↓ for ↑↓ spins. Here, {φ} denote a set of
single-particle orbitals and

D↑i = det |M| = det

∣∣∣∣∣∣∣
φ1(r1) · · · φ1(rN↑)
...

...
...

φN↑(r1) . . . φN↑(rN↑)

∣∣∣∣∣∣∣ , (10)

which ensures the antisymmetric property of a Fermionic
wave function upon a pair exchange of electrons. The Jas-
trow factors, which are factorized for computational effi-
ciency, describe the dynamic correlation, whereas static cor-
relation is described by the sum of Slater determinants. The
optimization of the many-body trial wave functions is a cru-
cial ingredient for accurate QMC calculations, since accurate
trial wave functions reduce statistical and systematic errors.
Several new methods for optimization have been developed
recently [8, 9]. These new methods enable us to optimize
the determinantal coefficients {C} in addition to the Jas-
trow parameters, reducing the dependence of the results on
the input trial wave function.

The product form of a trial wave function (Eqs. 3 and 9)
is rewritten as

ln ΨT (R) =
∑
k

lnψk({α},R), (11)

for numerical stability of large-scale QMC calculations. The
use of the log representation eliminates the need to normalize
the trial wave function, which has to be computed with other
properties, and to prevent overflow or underflow in using
ill-conditioned values, especially the determinants of large
matrices. Each component can be defined in a self-contained
class derived from an abstract base class. We express the
computations associated with ΨT as sums of wave function

components, e.g.,

∇ΨT

ΨT
= ∇ ln ΨT =

∑
k

∇ lnψk, (12)

which is needed for EL. The actual form of the trial wave
function is not known at compile time. We apply the builder
pattern to construct a trial wave function component by
component according to the input parameters as illustrated
in Fig. 3 [5]. The many-body Hamiltonian in Eq. (2) follows
the same patterns employed for the trial wave function.

The dominant computation for large systems is set by
the antisymmetric part ΨAS of the trial wave function: i) to
evaluate the ratios, Tratio; ii) to update Slater determinants,
TM−1 ; and iii) to fill in the Slater determinants with single-
particle orbitals, Tspo. Since the particle-by-particle moves
we employ change only one column of the M matrices at a
time, we employ a rank-1 update ofM−1 using the Sherman-
Morrison formula. This allows the inverse to be updated in
O(N2) time rather than O(N3) time for a full inversion and
the ratios in O(N).

The single-particle orbitals are a set of three-dimensional
functions defined on the simulation domain. They are typi-
cally expressed in a basis set. It is possible to optimize {φ}
in a given basis set, but, in practice, we use the solution
of an approximate method such as Hartree-Fock or density
functional theory (DFT). The most commonly used basis
sets are plane-wave basis set for solids in periodic boundary
conditions and atomic orbitals for molecular systems. The
cost to compute the value of a φ scales linearly with the
number of basis function evaluations which tends to grow
with the system size. This amounts to O(N2) cost for each
particle move and Tspo becomes the bottleneck at large N
with these basis sets.

For this reason, it is more efficient to use a localized basis
with compact support. In particular, 3D tricubic B-splines
provide a basis in which only 64 elements are nonzero at any
given point in space [10, 11]. The one-dimensional cubic B-
spline is given by,

f(x) =

i+2∑
i′=i−1

bi
′,3(x) pi′ , (13)

where bi(x) are the piecewise cubic polynomial basis func-
tions shown in Figure 4, and i = floor(∆−1x) is the index of
the first grid point ≤ x. Constructing a tensor product in
each Cartesian direction, we can represent a 3D orbital as

φn(x, y, z) =

i+2∑
i′=i−1

bi
′,3
x (x)

j+2∑
j′=j−1

bj
′,3
y (y)

k+2∑
k′=k−1

bk
′,3
z (z) pi′,j′,k′,n.

(14)
This allows the rapid evaluation of each orbital in constant
time. Furthermore, they are systematically improvable with
a single spacing parameter, so that accuracy is not compro-
mised.

The use of 3D tricubic B-splines greatly improves the com-
putational efficiency. Even for a modest problem size of 32
electrons, the speed up of B-spline interpolations is more
than sixfold over an equivalent PW basis set. The gain in
computation time of real-space methods becomes increas-
ingly large as the system size grows. On the downside, this
computational efficiency comes at the expense of increased
memory use.

Figure 4: Cubic B-spline basis functions in (a) 1 D
and (b) 2 D.

4. HYBRID QMC IMPLEMENTATION
Among the many ways to parallelize the DMC algorithm,

the multiplicity of the walkers in an ensemble provides the
most natural units for data and task parallelizations. The
internal state of each walker, its configuration R and other
data to reduce recomputation, is encapsulated in the Walker

class. The operations to propagate each walker during the
drift-diffusion process are expressed as a parallel loop over
the Walkers. Once a generation has evolved, the proper-
ties of all the walkers in an ensemble are collected to deter-
mine ET and Nw, the number of walkers of the next gen-
eration, which employs global reduction operations among
MPI tasks. The redistribution of Walkers during the load-
balance step can be done efficiently by exchanging a serial-
ized Walker object as a large message between paired MPI
tasks.

The communication overhead in QMC calculations is quite
negligible compared to TMC , the computation time. For the
reduction operations to perform averages and record results,
MPI collectives are found to be the most efficient choice on
many platforms. The message size and number of messages
for the collectives are independent of Np, the number of
tasks, and the problem size. But, the communication time
for the collectives can become a sizable fraction of the total
run time and decrease the parallel efficiency at large Np, as
the collectives scale as O(log2 Np) − O(N2

p) depending on
the network topology and specific algorithms in use.

There are several different and independent ways to par-
allelize a QMC calculation beyond the walker level, e.g.,
over parameter and configuration spaces and over Bloch k-
vectors. Such high-level parallelism can be easily managed
by mapping a DMC ensemble on a MPI group.

At present, power and thermal considerations constrain
the growth in computational power to come almost exclu-
sively through parallelism in the form of multi-core proces-
sors. As we scale out the problem size and use finer grids
to achieve higher accuracy, the memory required to store
the trial wave function including a large table for B-spline
interpolations will become larger than that available on a
single core, necessitating the distribution of a single trial
wave function data over the cores and adding communica-
tions to access the data on remote MPI tasks. This limita-
tion, however, can be easily overcome using shared memory
programming models that provide direct access to the entire
memory of a node rather than that of a core.

Among various parallel programming models, hybrid pro-
gramming using OpenMP and MPI provides QMC meth-
ods with simple but very effective solutions. We can utilize
the large shared-memory address space on a SMP node for
the data that can be shared. The loop over the walkers

W W
W

W W
W

W W

W W

Big ensemble data:
 B-spline table

MPI Task

W W
W

Figure 5: Schematic view of object distribution per
MPI task. The ovals denote the OpenMP threads
which own Walker objects (boxes), and other objects,

e.g., ΨT (circle) and Ĥ (diamond).

can be trivially parallelized using the parallel-for con-
struct of OpenMP. However, achieving high performance
with OpenMP requires careful data and thread manage-
ments.

Our hybrid implementation employs the distributed-memory
programming model within OpenMP. Each thread manages
a set of Walkers using thread-local storage. The objects as-
sociated with ΨT and Ĥ are replicated on all the threads
except for large, read-only objects, such as B-spline tables.
They are allocated at the task level and shared among all the
threads in a task, significantly reducing the memory foot-
print of the B-spline representation. Figure 5 illustrates the
distribution of Walkers and essential objects among OpenMP
threads and MPI tasks.

We fully exploit the language features of C++ to man-
age objects and threads to maximize data locality, elim-
inate false sharing and minimize the OpenMP overheads.
The code modification to implement OpenMP/MPI hybrid
algorithms is limited to the high-level QMC drivers. The
methods to migrate walker data sets between nodes for load
balancing in DMC and accumulating statistical averages are
unaffected by introducing the thread-level parallelism.

This hybrid OpenMP/MPI scheme has several advantages
over the standard MPI-only scheme.

• Memory optimized: large read-only data to store single-
particle orbitals and other shared properties to repre-
sent the trial wave function and many-body Hamilto-
nian can be shared among threads, which reduces the
memory footprint of a large-scale problem.

• Data-locality optimized: the data associated with an
active Walker are in cache during the compute-intensive
drift-diffusion process and the operations on an Walker

are optimized for cache reuse. Thread-local objects are
used to ensure the data affinity to a thread.

• Load balanced: Walkers in an ensemble are evenly dis-
tributed among threads and MPI tasks. The two-level
parallelism reduces the population imbalance among
MPI tasks and reduces the number of point-to-point
communications of large messages (serialized objects)
for the Walker exchange.

• Communication optimized: the communication over-

of cores/2400

(a) (b)

0

20

40

60

80

100

0 20 40 60 80 100

S
ee

du
p/

24
00

 c
or

es

Ideal
DMC scaling

216K cores

OpenMP Threads (MPI Tasks)
1(512) 4(128) 8(64)

E
nh

an
ce

m
en

t

Figure 6: (a) Performance enhancement of
OpenMP/MPI hybrid runs on a Cray XT4 when
all the cores are utilized. The dotted line denotes
the ideal enhancement of 4 on dual quad-core nodes.
(b) Strong scaling of DMC on Cray XT5 using 6
OpenMP threads and two MPI tasks per dual hex-
core node. All the data are collected on Jaguar at
NCCS [12].

head, especially for the collective operations necessary
to determine ET and measure the properties of an en-
semble, is significantly lowered by using fewer MPI
tasks.

Effectiveness of the hybrid scheme is evident in Fig 6(a).
The parallel efficiency remains high for any combination of
OpenMP threads and MPI tasks even at this modest scale
of 512 cores. In fact, DMC scales nearly perfectly with re-
spect to the number of threads: the additional parallelism
from multi threading allows more walkers per MPI task
and improves the overall parallel efficiency and load bal-
ance among SMP nodes. The VMC efficiency reflects the
memory bandwidth-limited nature of QMC algorithms with
B-splines when all the computing cores are used. The per-
formance enhancement less than the ideal 4 over the runs
using only a quarter of the physical cores is expected, since
the resources are shared among the multiple cores. This is
not unique to OpenMP, as indicated by the pure MPI run
using 512 tasks in Fig. 6(a).

For QMC simulations, the added parallelism with more
cores on a SMP node is always beneficial, as Tcpu ∝ 1/Ncores.
The parallel efficiency of hybrid runs depends on the mem-
ory architecture and is subject to the quality of compilers
and MPI implementations. In general, the best performance
for a wide range of problems size is obtained when a MPI
task is mapped over a NUMA node as shown in Fig. 6(a)
with 4 threads on a quad-core processor.

Hybrid QMC algorithms have allowed us to apply QMC
methods to the problems size at unprecedented scales on
large-scale clusters of multi-core SMPs, efficiently utilizing
all the available computing resources. At present, we can ob-
tain the energy of a defect in a 64-Si crystalline system (256
electrons) to within 1 mHa in an hour using 4800 cores, com-
pleting a QMC workflow of VMC optimizations and DMC
projection. The B-spline table for the system with a defect,
for which no symmetry can be exploited to reduce the table
size, requires more than 4 GB and it is necessary to employ
6 OpenMP threads and 2 MPI tasks on the dual hex-core
nodes with 16 GB of memory. Figure 6(b) shows the parallel
efficiency of DMC of the same system on Cray XT5 [12]. It
shows near 95% of the ideal speedup up to 216K cores, which
implies that the same chemical accuracy can be achieved in
a much shorter wall-clock time.

5. LIMITATIONS AND WORKS IN PROGRESS
As previously discussed, QMC computations are domi-

nated by evaluation of ΨT and the time to generate a MC
sample grows with the problem size N as

TMC = N × (TM−1 + Tratios + Tspo) + Tothers

= O(N3) +O(N2) +O(N2Nb), (15)

where Nb=1 with B-splines. Other computations involv-
ing Jastrow functions scale at most qudratically to N with
much smaller prefactors. The number of samples required
to reach the same accuracy weakly depends on the problem
size, making the overall scaling of O(O3) − O(N4). This
favorable scaling and near-perfect parallel efficiency make
QMC methods uniquely powerful tools to study the elec-
tronic structure of realistic systems on the current gener-
ation of HPC systems. So far, we could reap increasing
computing power – faster CPU clock, more cores on a SMP
node and more nodes – to improve the efficiency of QMC
calculations through Walker parallelization. However, sig-
nificant changes are needed for QMC methods to play ex-
panded roles on emerging architectures which will have an
order of magnitude higher concurrency and a deeper mem-
ory and communication hierarchy [13].

Our OpenMP/MPI hybrid methods employ many opti-
mizations to improve computational efficiency at the ex-
pense of increased memory use. Each walker needs tem-
porary data for update methods, which scales as O(N2).
This is in addition to the O(N2) memory required for the
B-spline table shared by all the walkers. As we scale out the
problem size, the required memory will eventually become
larger than what is available on a SMP node.

Several methods have been under development to over-
come the memory limitation. (i) Single-precision can be
used to store the B-spline table, halving the memory use and
time in evaluating the single-particle orbitals. Our exten-
sive tests have shown that results of the double and mostly
single-precision GPU implementations agree within the sta-
tistical error we have achieved thus far [14]. (ii) We can use
a mixed-basis approach. The mesh spacing required to accu-
rately represent the orbitals is determined by their smallest
feature size. The shortest wavelength features are concen-
trated around the atomic cores, while in the area between
the atoms, the functions are smooth. For this reason, we di-
vide space into spherical regions called muffin tins surround-
ing the atoms, and an interstitial region between them. Uti-
lizing this dual basis in place of 3D B-splines alone typically
allows the same accuracy to be achieved with 5× to 10× less
memory, with about the same performance [15]. (iii) We are
exploring distribution of the B-spline table over a group of
SMP nodes using the Global Arrays framework [16]. It pro-
vides a partitioned local view of data in the MPI processes
and a global-shared-memory abstraction and allows direct
access to portions of gloabal arrays that are stored at a re-
mote node’s memory.

These improvements will extend the problems size we can
study with QMC on large clusters of SMPs, the most com-
mon HPC architecture of today and in a near future. How-
ever, the scaling of TMC ∼ O(N3−4) with the problem size
will ultimately place limits on QMC’s applicability. Again,
the increasing parallelism on newer processors and thread-
based parallel programming models on a SMP, e.g., OpenMP
3.0 [3] and Intel TBB [17], provide QMC with solutions.

The forms of ΨT and Ĥ as sums of components, lend
themselves to task parallelism using well-encapsulated ob-
jects. The critical computational step to evaluate the single-
particle orbitals and the determinant updates can be carried
out in parallel. Furthermore, we can expose the parallel
loops over ions and electrons as in the GPU implementa-
tion [14]. Preliminary results show promising performance
gains with OpenMP task and nested parallelism by defining
large chunks of computational units for the tasks and care-
fully managing objects. The fine-grained task parallelism
removes the constraint on the number of Walkers, currently
at least one Walker per core, and enables practical QMC
calculations of larger systems with much reduced time-to-
solution.

As we improve the computational efficiency and memory
use, other elements of the QMC algorithms that have been
ignored will become new barriers to overcome. Our scal-
ing studies expose the performance issues with blocking col-
lectives and parallel I/O at large scales. The true parallel
efficiency of a complete QMC workflow is also limited by
the initialization stage, shown as the gray region of Fig. 2,
and therefore reducing the equilibration time is essential to
attain high efficiency with increasing parallelism. Solutions
are being explored including increased intervals between the
synchronizations, asynchronous I/O, use of non-blocking col-
lectives and variable time steps for DMC to speed up the
equilibration.

6. CONCLUSIONS
Many levels of parallelism are afforded by QMC algo-

rithms, including, but not limited to the natural parallelism
inherent in Monte Carlo methods, making QMC intrinsically
scalable and ideally suited to take advantage of the growth in
computational power. We presented OpenMP/MPI hybrid
implementations that reduce the memory footprint by se-
lectively replicating data for computational efficiency, while
improving the overall parallel efficiency on large-scale clus-
ters of SMPs based on multi-core processors. The walker-
parallelization allows QMC methods to handle 1000s of elec-
trons without incurring extra communication overhead and
enables high accuracy QMC calculations of realistic systems.
We have identified the barriers to overcome, as we further
scale out problem size and improve the accuracy of QMC
calculations, and offer several solutions to extend QMC’s
reach on future architectures. With this progress, perhaps
in a few years time, QMC simulations will be as ubiquitous
as DFT calculations are at present and will become the tool
of choice for materials design by simulations.

7. ACKNOWLEDGMENTS
This work was supported by the U.S. Department of En-

ergy (DOE) under Contract No. DOE-DE-FG05-08OR23336
and by the National Science Foundation under No. 0904572.
This research used resources of the National Center for Com-
putational Sciences and the Center for Nanophase Materials
Sciences, which are sponsored by the respective facilities di-
visions of the offices of Advanced Scientific Computing Re-
search and Basic Energy Sciences of DOE under Contract
No. DE-AC05-00OR22725. This work was performed in
part under the auspices of the US DOE by LLNL under
Contract DE-AC52-07NA27344. Sandia National Laborato-
ries is a multiprogram laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under Contract
No. DE-AC04-94AL85000. This research was supported
by an allocation of advanced computing resources provided
by the National Science Foundation, under TG-MCA93S030
and TG-MCA07S016, and utilized the Abe and Lincoln clus-
ter at the National Center for Supercomputing Applications,
as well as Kraken at the National Institute for Computa-
tional Sciences.

8. ADDITIONAL AUTHORS
David M Ceperley, National Center for Supercomputing

Applications & Department of Physics, University of Illinois,
email: ceperley@illinois.edu.

9. REFERENCES
[1] Foulkes W M C, Mitas L, Needs R J and Rajagopal G

2001 Rev. Mod. Phys. 73 33–83

[2] Message passing library http://www.mpi-forum.org/

[3] Openmp application program interface
http://www.openmp.org

[4] Jeongnim Kim, K Esler, J McMinis, B Clark, J
Gergely, S Chiesa, K Delaney, J Vincent and D
Ceperley QMCPACK simulation suite URL
http://qmcpack.cmscc.org

[5] Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides 1994 Design Patterns: Elements of
Reusable Object-Oriented Software (Addison-Wesley)
chap Methods for Coupled Electronic-Ionic Monte
Carlo

[6] Hdf (hierarchical data format) URL
http://hdf.ncsa.uiuc,edu/HDF5

[7] Box G E P and Jenkins G 1976 Time Series Analysis:
Forecasting and Control (Holden-Day)

[8] Umrigar C J, Toulouse J, Filippi C, Sorella S and
Hennig R G 2007 Phys. Rev. Lett. 98 110201

[9] Esler K P, Kim J, Ceperley D M, Purwanto W,
Walter E J, Krakauer H, Zhang S, Kent P R C,
Hennig R G, Umrigar C, Bajdich M, Kolorenc J,
Mitas L and Srinivasan A 2008 Journal of Physics:
Conference Series 125 012057 (15pp)

[10] D Alfè and MJ Gillan 2004 Phys. Rev. B. 70
1661101(R)

[11] K Esler Einspline B-spline library,
http://einspline.sf.net URL
http://einspline.sf.net

[12] Jaguar (Cray XT), ORNL Leadership Computing
Facility (OLCF)

[13] Dongarra J, Beckman P, Aerts P, Cappello F, Lippert
T, Matsuoka S, Messina P, Moore T, Stevens R,
Trefethen A and Valero M 2009 Int. J. High Perform.
Comput. Appl. 23 309–322 ISSN 1094-3420

[14] Esler K P, Kim J, Shulenburger L and Ceperley D M
2010 Computing in Science and Engineering 99
preprint

[15] Esler K P, Cohen R E, Militzer B, Kim J, Needs R J
and Towler M D 2010 Phys. Rev. Lett. 104 185702

[16] Tirukkovalur S, Dinan J, Niu Q, Sadayappan P, Kim
J, Srinivasan A, Kumar S and Hammond J 2011 A
global address space approach to automated data

management for parallel quantum monte carlo
applications

[17] James Reinders 2007 Intel Thread Building Blocks
(O’Reilly Media)

