
Large-scale Botnet Analysis on a Budget

Ron Minnich, Andrew Sweeney, Kristopher Watts, Don Rudish
John Floren, David Fritz, Keith Vanderveen, Yung Ryn Choe, Casey Deccio

Sandia National Laboratories

Abstract

Botnets are complex, distributed systems consisting of
many tens of thousands of individual instances of mal-
ware which, once connected, are resilient, self-healing,
controllable from a central place. Having a controlled
environment to analyze the spread of infectious malware
and behavior of botnets at Internet scale is essential to
better understanding botnet behavior, effectively disman-
tling them, and designing countermeasures. In this paper
we present an architecture that we have created to enable
these capabilities. Using novel techniques, we are able
to boot up to 1,200 Linux virtual machines (VMs), or
200 Microsoft Windows 7 VMs on a single machine, by
over-committing the processor and memory resources of
the system to an unusual degree. We discuss our applica-
tion of these techniques to achieve large-scale emulation
of malware for botnet analysis and describe our initial
findings.

1 Introduction

Botnets are complex, distributed systems consisting of
many tens of thousands of individual instances of mal-
ware orbotswhich, once connected, are resilient, self-
healing, controllable from a central place, and sometimes
capable of sophisticated autonomous behavior. The own-
ers and operators of botnets (known asbotherders) use
them to send spam, steal login credentials and other in-
formation from victims, and engage in other criminal ac-
tivities [1]. Botnets are widespread on the Internet and
show few signs of going away. It is likely that the reader
has hosted a botnet at some point, and almost certain that
the reader’s organization has.

Recent botnets have shown surprising resiliency to at-
tempts to remove them [12]. Sophisticated botnets such
as Storm, Conficker, and Waledac have used peer-to-peer
(P2P) networks for command and control [7, 5], result-
ing in an overlay network independent of the underly-

ing Internet and geography. Such botnets are resilient to
outages of either countries or single organizations, and
“pulling the plug” is a challenge. Some botnets have
even been known to detect probing and autonomously
respond with a denial of service attack [13]. An un-
derstanding of botnet behavior at large scale in a con-
tained environment will facilitate the defense and dis-
mantling of botnets. We propose such a system suitable
for running on a cluster comprised of commodity hard-
ware hosting upwards of hundreds of thousands of virtual
machines (VMs).

Traditionally, studies of botnet software and behavior
have relied nearly exclusively on reverse engineering of
captured bot binaries, dynamic analysis of bot binaries
using sandboxes, and observation of botnets “in the wild”
using honeynets/honeyfarms [17] or through insertion of
an instrumented false bot controlled by researchers into
an extant botnet [11, 8]. As noted by studies such as [4]
and [2], however, the aforementioned techniques cannot
provide the “big picture” of a botnet’s operations, nor
do they provide a reliable means to conduct repeatable
experiments into possible means of detecting, defending
against, or neutralizing botnets.

The solution, as recognized by [4] and [2], is to build a
network testbed capable of holding an entire operational
botnet in a “network sandbox.” Like sandboxing of indi-
vidual bots, a capability to sandbox an entire functioning
botnet would provide the opportunity to investigate the
botnet’s behavior and function, test “what if” scenarios,
and reliably re-run experiments to generate confidence in
the researcher’s conclusions, all without threatening the
safety and reliability of the Internet.

In the remainder of this paper, we discuss the creation
of a network testbed capable of running the largest bot-
nets discovered to date on the Internet, and initial exper-
iments conducted on this testbed with a real botnet. We
list the following as the primary contributions of this pa-
per:

1

SAND2011-2849C

• Application of novel techniques to over-budget re-
sources for scaling VM guest capabilities in a clus-
ter environment.

• Implementation of a prototype testbed for scalable
malware analysis in a contained environment.

We have developed a prototype testbed consisting of a
520-node cluster, capable of hosting 62,000 Windows 7
VMs or 600,000 Linux VMs. In this testbed we have run
real botnet malware and we make observations about its
behavior.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss related efforts to study botnets at scale.
In Section 3, we discuss challenges and solutions we’ve
contributed towards making efficient use of computing
resources to achieve large-scale performance. Section 4
describes the early malware experiments we have run in
our environment, including the platform on which it was
run and the behavior we observed. In Sections 5 and 6
we describe future work in this area and summarize our
conclusions.

2 Related Work

Previous research into understanding the behavior of bot-
nets has followed the approaches of reverse engineer-
ing and static analysis of captured bot code [14], break-
ing into an extant botnet[11], running actual bot code at
a small scale[13], or creating a simulation of the bot-
net’s network behavior and observing that [5]. While
all of these approaches have increased our understand-
ing of botnets, what has been missing is an experimental
platform capable of running a full-sized botnet in a con-
trolled environment.

2.1 Scalable platforms to host bots

Some prior research has sought to achieve scalable
tools for better understanding botnets and other mal-
ware. The Potemkin project [17] used virtualization,
over-subscription of physical resources, and late binding
of resources to requests to achieve a high fidelity hon-
eyfarm capable of scaling to tens of thousands of em-
ulated hosts. Unlike our project, the goal of Potemkin
was not to actually run a botnet in its entirety, but rather
to present a large number of apparently vulnerable sys-
tems to elicit attempts from the Internet to compromise
the systems, and thereby learn about the exploits used by
malware, understand the behavior of malware after it has
compromised a new host, and capture samples of mal-
ware. While some of the techniques used by Potemkin
are similar to our project (lots of VMs, over-subscription

of resources), Potemkin mostly focused on and facili-
tated interactions between its VMs and the rest of a bot-
net residing on the Internet, as opposed to our project, in
which bots on different VMs interact with each other in
a closed environment.

Barford et al. [2] demonstrated a botnet testbed with
similar goals to our project and designed to scale to thou-
sands of bots. The system, called the Botnet Evaluation
Environment, was built to run on Emulab [19] enabled
network testbeds such as DETER [3], and contained es-
sential services such as DNS and IRC to provide a closed
environment within which a fully formed botnet could
function, albeit at the scale of hundreds to thousands of
bots.

More recently, Calvet et al. hosted a captive Waledac
botnet with 3000 bot instances [4]. They achieved this
using a 98 node server farm and roughly 30 VMs per
physical node, with each VM presumably containing an
instance of Windows infected with the Waledac bot. Cal-
vet et al. give convincing reasons why emulation of a
botnet at scale is a necessary adjunct to reverse engi-
neering of botnet binaries and observations of botnets
in the wild in order to truly understand botnet behavior,
and they were able to discover a bottleneck in Waledac’s
C&C traffic that likely led to the botherder’s switch to
common session keys and use of unsigned server com-
mands (previously assumed to be design flaws). They
state that they would not have made this discovery had
they not had the capability to observe the botnet running
at the thousand node scale.

Our project has similar goals to the Barford and Calvet
emulation testbeds, but we were able to improve on the
scale of experiments reported by both groups by more
than an order of magnitude owing to our use of lighter
weight virtual machines, substantial efforts to decrease
the memory footprints of Linux and Windows instances,
use of scalable cluster management software, and use
of larger clusters commonplace in the high performance
computing community.

Both [4] and [2] demonstrated testbeds capable of
holding a few hundred to a few thousand nodes of a bot-
net, and both correctly point out the need to study botnets
at scale to truly understand them. However, we believe
that even greater scale is needed, because actual bot-
nets can consist of hundreds of thousands to millions of
nodes [18]. Trying to understand botnets and their inter-
actions with (and effects on) networks by extrapolating
from studies done at two to three orders of magnitude
smaller scale risks missing crucial effects that manifest
themselves in the real botnet on the real Internet.

2

Figure 1: Architectural diagrams of a MegaTux node and
MegaWin nodes based on Windows and Wine.

3 Scalable Computing Resources

Creating an environment of Internet proportions with
limited physical machines necessitates the use of vir-
tual machines (VMs). To maximize the number of vir-
tual machines that can be deployed on each physical ma-
chine, resources such as processor (CPU) and memory
on host systems must be used efficiently and even over-
committed. We achieve this by lightening the effective
footprint of the host system, the virtual machine monitor
(VMM) and the guest operating systems (OS). However,
any optimizations must not impede the end goal of being
able to run botnets at scale, monitor their behavior, and
make meaningful observations.

In this section we discuss the methodology we have
employed to enable deployment of large numbers of
VMs on commodity hardware in a cluster environment.
Our techniques aim to run both Linux- and Microsoft
Windows-based malware, and we call these environ-
mentsMegaTuxandMegaWin, respectively, referring to
the scale we aim to achieve. Architectural diagrams of
our models are illustrated in Figure 1.

3.1 Host Environment

The host OS on each physical machine runs in a diskless
environment. There are several reasons for this:

• although our contributions focus on the ability to
scale simulation on even commodity hardware, the
ability to port our system to high-end systems (e.g.,
Blue Gene and Cray XT) for the largest experiments
is extremely useful, and these systems consist com-
pletely of diskless nodes;

• it has not proven practical to share a single disk be-
tween thousands of VMs on a physical machine;
and

• were our environment ever connected to the real In-
ternet, we would want to be able to erase any down-
loaded data with a simple power cycle.

Our approach is based on the oneSIS1 platform, us-
ing diskless mode. However, rather than using a net-
work filesystem (NFS) mounted root filesystem, we ex-
tend the oneSIS model to support a root filesystem based
entirely in memory—a RAM (random access memory)
disk. On clusters, the kernel and initial RAM disk (ini-
trd) are downloaded via a preboot execution environment
(PXE).

The initrd includes a kernel and initrd for the guest
VMs. Both the host and guest initrd include enough files
to boot the host OS. Any additional programs that need to
be executed are later pushed to the node using software
built in-house for efficient transfer to large numbers of
cluster nodes. The result is a pure memory-based node
that has no dependencies on external filesystem mounts.

3.2 MegaTux

The MegaTux project is targeted at environments of
500,000 to tens of millions of Linux kernels. It con-
sists of a number of components. A full description of
MegaTux is outside the scope of this paper, but we pro-
vide a brief overview.

3.3 VMatic

VMatic is a tool for rapidly provisioning virtual machine
environments. It is an extension of Sandia’s oneSIS clus-
ter management system, modified so that nodes can be
operated with a RAMdisk root, instead of a local disk or
NFS root file system. We have tested scaling of VMatic
to over 4096 physical nodes, and over 4.5 million nodes,
as of this writing.

VMatic can operate with any virtual machine tech-
nology, although we currently only use either lguest
or KVM. We initially targeted only Linux guests, but
VMatic has been able to support Windows guests with
no changes. VMatic can also, if needed, support mixed
Windows/Linux configurations. We see no limits to the

1http://onesis.org/

3

guest OSes we deploy on VMatic; if they will work un-
der a Linux virtual machine, they will work on VMatic.

Using a simple configuration file and command set,
VMatic produces system images that can be uploaded to
compute nodes via network boot. The user is able to
specify the configuration of both the host and guest im-
ages. Through the use of multiple VMatic configuration
files, a user can maintain separate build configurations
for a variety of experiments on multiple clusters. We can
do test runs on our laptops, real runs on clusters, and
“hero” runs on the large Cray XT systems at Oak Ridge
National Labs.

Once the physical host starts booting, it has all the in-
formation it needs to configure its own services and con-
figure its local virtual machines. The MAC addresses,
virtual Ethernet devices, and routes to other networks are
all computed as a node starts up; there is no central store
of MAC addresses for all the VMs. A single Linux vir-
tual machine takes about one second to fully boot.

In addition to provisioning HPC systems, VMatic can
also be used to provision lightweight VM’s on a local
machine. This has proven to be invaluable for our de-
velopment work as it gives each team member the ability
to boot their own virtual cluster on their laptop. On our
laptops, we can reconfigure and start 100 new VMs in
less than 30 seconds. This speed makes testing easy. De-
velopers now have an immediate, convenient, and reli-
able way for performing automated testing on their code
sets without consuming precious time on limited HPC
resources. This mechanism was used in the creation of
our first botnet prototype with successful results when
we started scaling out.

3.4 gproc

Gproc is the latest in a line of process startup systems we
have developed, starting with BProc[6] and continuing
with XCPU[10]. Gproc uses a tree spawn mechanism
similar to that of XCPU, and also moves all the libraries
a given command needs to run, as does XCPU. Instead
of the ad-hoc command tree spawn technique that BProc
uses, Gproc sets up a persistent tree of servers that re-
duces the tree spawn overhead. Gproc uses intermediate
nodes in the tree to aggregate I/O from remote processes.

The BProc daemon structure has two different pro-
grams: the master on a control node and slave daemons
on each compute node. This model scales well to several
thousand nodes but no further. Gproc daemons adopt the
XCPU model: the daemons are all the same code, and
can adopt the role of server or client. A process tree
hence consists of a root server, intermediate daemons
playing both roles, and a set of daemons at the leaves.
The ultimate clients are at the leaves of the tree, i.e. indi-
vidual processes. The ultimate server is at the root of the

(("MARK: 1266084142.710273")0x4336 "o0x4336 s1 #0")

(("MARK: 1266084143.272552")0x924e "o0x924e s1 #0")

(("MARK: 1266084145.387336")0x9879 "o0x9879 s1 #0")

Figure 2: Sample of Pushmon output. MARK: denotes
the Unix epoch time from the root node and is embedded
with the original messages using S-expressions.

tree, i.e. the program that initiates the million or more
commands. Daemons in internal nodes of the tree con-
trol processes below them, and relay data up and down
the tree.

Each slave is a master of all the VM guests on its node.
Hence, the process repeats for the VMs on each physical
node.

3.5 pushmon

Pushmon is a hierarchical monitoring system built from
Supermon[16]. Like Supermon, Pushmon uses S-
expressions to describe the data, and is designed for hi-
erarchy, with Pushmon nodes functioning as both clients
and servers. Unlike Supermon, Pushmon relies on a push
model, with data being periodically pushed from the
leaves to the root. Pushmon is also self-configuring, with
the nodes using a low-cost computation to determine
where their parent in the tree is, up to the root. Finally,
Pushmon is designed not to just group S-expressions to-
gether, as Supermon does, but also to perform computa-
tions on the S-expressions so as to reduce the data load
on the network. The computations to be performed can
themselves be defined by S-expressions, and interpreted,
allowing a great deal of flexibility, up to and including
symbolic computing. See Figure 2.

Data load on the network is also reduced when the
VM’s relationship to their host OS is taken into account.
When considering the fast communication path between
a VM and its host OS, Pushmon can be used as an ef-
fective aggregator to collect messages from their child
VMs before pushing to the root minimizing load on the
physical network.

We are working to build an efficient virtio[15] trans-
port for guest to host Pushmon communications. In spite
of the plethora of virtio software that has been written,
there is nothing that resembles an efficient pipe. We plan
to remedy this problem.

3.6 MegaWin

Unlike the case for Linux-based OSes, we do not have
access to the source code for Microsoft Windows, which
presents unique challenges to minimizing the resources
it requires to run as a VM. First, due to its closed nature,

4

we have no way to modify Windows to run asparavir-
tual guest—that is, one that is aware that it is running
as a VM and optimizes accordingly. Therefore, in order
to run Windows as a guest OS, we must use full virtu-
alization, which imposes costs that affect both memory
usage and performance. We detail our experiences run-
ning Windows under full virtualization in this section,
as well as an alternative solution for running Windows-
based malware using Wine2.

3.6.1 Full virtualization

We currently use the Kernel Based Virtual Machine
(KVM) software to support fully virtualized Windows
guests [9]. Using this platform, we combine two strate-
gies to maximize the efficiency of running a Windows
VM: minimizing the size of the Windows OS image as
much as possible; and using Linux and KVM capabili-
ties to the maximum extent possible.

The memory-only operation of our host machines im-
proves image file access and greatly simplifies the prob-
lem of wiping the machine, but complicates the problem
of managing Windows images, because everything is in
memory. Windows can be considered to have two classes
of memory footprints:staticanddynamic. The static im-
age is the disk image which Windows boots and which
is stored as a file in the root filesystem of the host. This
bootable image can be reduced to 1GB, but further reduc-
tion is very difficult, because we have no way to modify
the Windows build to eliminate components not essential
for our experimentation, such as the graphical user inter-
face (GUI). The dynamic image is the memory Windows
grows to occupy as it runs.

In standard usage a bootable Windows image file will
only work for a single VM instance because Windows
images contain a lot of per-machine information. Be-
cause booting large numbers of Windows VM guests is
not feasible or efficient if each has its own 1GB image,
we use the following methodology to enable many guests
to share a common Windows image on a single host.
Rather than using a Windows image in the “powered
off” state to boot each VM, we use the “snapshot” of an
almost-booted Windows VM, taken previously, as a start-
ing point in the boot process for each VM on a host. Each
VM is appropriately configured once the snapshot is re-
sumed, so each guest gets its own personality, including
network configuration. Also, this speeds up the boot pro-
cess, reducing per-VM startup time from approximately
two minutes to only a few seconds since much of the
booting was done prior to taking the VM snapshot.

Another Windows component affecting the efficient
use of computing resources is the desktop environment.

2http://www.winehq.org/

Since we cannot eliminate the GUI completely, we miti-
gate the issue by using the Windows Embedded version
and replacing the standard Windows desktop environ-
ment with the bblean desktop3. These changes decrease
both the static and dynamic memory footprint, and the
bblean desktop decreases CPU utilization because it ex-
cludes features such as the anti-aliasing of fonts.

The result of our optimizations is a Windows image
that consumes 512MB for the dynamic footprint per VM
and shares a 1GB static footprint across other VMs on
the same host.

3.6.2 Memory deduplication

Even with the improvements to static and dynamic mem-
ory footprint, host resources limit booting anything more
than a nominal number of Windows VMs on a given host,
e.g., around five on a host system with 12GB of memory.
To further optimize the resources of the host machine, we
exploit new capabilities of Linux virtualization, in par-
ticular a new software system called KSM [20]. KSM,
as the authors describe it, “is code running in the Linux
kernel scanning the memory of all the VMs running
on a single host, looking for duplication and consoli-
dating” [20]. KSM accomplishes this by periodically
scanning all pages that are eligible for deduplication and
merging identical ones into copy-on-write pages. The
use of KSM is especially effective with our workload,
as there exists a large amount of mergeable data across
hundreds of identical VMs, with the exception of some
runtime activity.

Using KSM to increase the number of Windows VMs
running on a host an order of magnitude beyond its nat-
ural limits introduces some key problems. KSM cannot
scan and merge pages faster than we can allocate them
through launching new VMs. To facilitate this, we mod-
ified the KSM interface to force the KSM thread to only
scan memory belonging to processes that we designate.
This allows us to focus KSM on newly created VMs
during launch, or on key VMs that we know are better
matches for deduplication during runtime. KSM can op-
erate on any number of processes that we inform it to at
any point in time. The result is the ability to more intel-
ligently manage significantly over-budgeted memory.

Figure 3 illustrates launching many Windows 7 VMs
on a host with KSM. The number of distinct VMs to fo-
cus on is varied from 0 (default KSM behavior) to 5. In
the most naive case, we launch VMs until we run out of
physical memory, and block until KSM merges enough
memory to continue launching. With our modification,
we can force KSM to focus on newly launched VMs,
which saves time and maintains enough free memory to
avoid out-of-memory events when running VMs become

3http://bb4win.sourceforge.net/bblean/

5

0 100 200 300 400 500 600 700 800
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Fr

ee
 M

em
or

y
(M

B)
KSM Naive vs PID Focus - 100 VMs @ 512mb each

Naive
Focus set: 1
Focus set: 2
Focus set: 3
Focus set: 4
Focus set: 5

Figure 3: KSM: Free memory vs. Time

more active. In practice, we are able to launch ten VMs
at a time, focusing KSM on all ten. When KSM com-
pletes a full scan, we launch another ten VMs. Using
this process, we were able to boot 200 Windows 7 Em-
bedded VM instances on a machine with only 12GB of
memory.

3.6.3 Wine

In addition to our efforts to minimize the memory foot-
print of a full Microsoft Windows image, we have ex-
plored other alternatives to running Windows-based mal-
ware in our environment. Wine implements the Win-
dows application programming interface (API), allowing
Windows software to run in other environments, such as
Linux.

Building on the MegaTux model, we run Wine on
the Linux-based VMs. Standard Wine includes provi-
sions for special features, such as graphics and sound.
However, since our focus is on running Windows-based
malware, we can minimize the footprint associated with
Wine by eliminating libraries not essential to its execu-
tion when building the Wine binary. We reduced the size
of the Wine binary about 5%, from 195MB to 186MB,
using this process.

While the Wine software is not equivalent to a Win-
dows installation, in many cases it will suit our purposes
and provide a flexibility that we might not otherwise have
with a Windows image. One benefit mentioned previ-
ously is that the binary itself can be reduced because its
source is available. Also, Wine running in a VM envi-
ronment inherits the virtualization benefits of the under-
lying guest OS, including reducing the memory footprint
incurred by the guest OS, as well as paravirtualization ca-
pabilities. Finally, in contrast to licensing for large num-

bers of Windows installations, which might be costly and
infeasible, Wine is freely available under an open source
license.

Because Wine is an implementation of the Windows
API, it might not be suitable for some scenarios, such
as the spread of malware through the exploit of a vul-
nerability in the Windows implementation. However, for
the purposes of this paper, we focus on running botnets
comprised of hosts already infected with malware.

3.7 Compatibility tradeoffs

The process of minimizing the resource footprint used
by VM images allows scalability through efficient use
of resources. However, it also presents potential chal-
lenges with regard to execution compatibility in the slim-
mer environments. If programs (in this case botnet mal-
ware) executed in such environments fail to detect cer-
tain functionality, then they might: refuse to run, know-
ing they are subjects of analysis; behave differently from
how they would in an unmodified environment; or fail
to run, because of dependencies on missing components.
In any of these cases, the observed behavior from macro-
analysis might be misleading or counter-productive.

In the future we intend to do implement several provi-
sions to mitigate these circumstances, making use of our
in-house isolated malware testing and reverse engineer-
ing environment. First, we plan to a full-system com-
parison in terms of file and registry existence in a full
environment compared to the virtual environment. Sec-
ond, we intend to compare micro behaviors of individual
malware specimens with their collaborative behavior in
the full virtualization environment.

4 Experimentation

In this section we describe the prototype testbed built on
commodity hardware on which we’ve applied the tech-
niques discussed earlier in the paper to boot large num-
bers of VMs for botnet analysis. We also describe some
of the behaviors we’ve observed in initial experimenta-
tion.

4.1 Testbed

We have created a cluster as a prototype testbed for large-
scale botnet analysis This system, dubbed the Knowl-
edge Acquisition Network Emulation system (KANE), is
unique from other clusters in that it is comprised of true
off-the-shelf commodity personal computers (PCs), pur-
chased for less than $500,000 (including auxiliary hard-
ware). The nodes are comparable to home desktop PCs
connected to the Internet using a single Ethernet connec-
tion.

6

Figure 4: This figure illustrates the basic layout of the
KANE cluster.

4.1.1 Hardware configuration

The KANE cluster is composed of 13 racks having five
shelves each. Each rack contains 40 compute nodes and
a gigabit Ethernet (GbE) switch which connects them all.
All rack switches are interconnected at a central switch,
and nodes are managed using a single front-endhead
node connected to the central switch. While individual
compute nodes only have a single GbE interface, the
head node is equipped with four channel-bonded inter-
faces to provide greater throughput. The head node also
provides services, such as the Dynamic Host Configu-
ration Protocol (DHCP), Domain Name System (DNS),
and Trivial File Transfer Protocol (TFTP) for PXE boot.
Figure 4 illustrates this layout.

KANE differs from other network testbeds in that it
is primarily focused on scaling, leveraging virtualiza-
tion technology. For example, KANE nodes use the In-
tel Core i7 processor, which makes virtualization more
transparent to guest OSes. Unlike the DETER testbed,
which is distributed across a geographic region, the
KANE testbed is isolated from the outside Internet and
is entirely contained within our research laboratory. Net-
work properties, such as latency, are artificially emulated
or introduced using software.

KANE serves as our dedicated testbed environment.
Using our setup, we can prototype experiments prior to
running on bigger systems, where our time on the system
is more scarce.

4.1.2 Networking

Networking for the VMs is an essential element of our
testbed. Ideally our environment would support arbitrary
network topologies, including routing protocols. For the
present, we have focused on host scalability in a two-
tier hierarchical architecture. Each host OS running on a
physical node acts as a router to the VMs it hosts, and the

guest VMs are networked on the same broadcast domain
using a software switch run by the host OS. All host OSes
maintain static routes to all other host OSes, enabling
global routing in the testbed.

4.2 Experiments

The individual bots ran on a Windows 7 image which we
were able to make significantly smaller than is typical.
We determined that the bots, once booted, registered with
the IRC command and control channel, and we could is-
sue commands to the bots.

5 Future Work

Significant challenges remain to be addressed to make
emulation of botnets with millions of nodes a viable ad-
junct to other research methods in studying botnets. First
among these are developing scalable methods for visual-
ization and analysis of data. While we have developed
prototype tools for monitoring, the challenge is in ef-
fectively collecting and aggregating useful information
from each VM without overwhelming network or com-
puting resources, and without affecting experimentation.
We intend to extend our prototype tools to incorporate
these desirable characteristics.

Another capability alluded to earlier in this paper
is the ability to deploy arbitrary network topologies,
resembling either known networks or large networks
with Internet-like characteristics, complete with dynamic
routing. We intend to implement this in a future version
of our toolset for managing the setup and configuration
of our VMs.

6 Conclusions

In this paper we have presented an approach to achieving
realistic scale in emulation of botnets in a laboratory set-
ting. Our approach builds on lightweight virtualization
technology, leveraging novel techniques for efficient use
of computing resources by both Linux- and Windows-
based VMs.

We have performed initial experiments with actual
malware in our testbed environment built from commod-
ity hardware. Using this relatively small cluster of 520
nodes, we successfully ran an instance of the virut botnet
with 62,000 members.

While the tools and techniques reported in this paper
have been developed for and prototyped on our commod-
ity testbed cluster, they have been designed with the vi-
sion to run them on the largest supercomputers available.
Preliminary experiments conducted on the Jaguar super-
computer at Oak Ridge National Laboratory indicate that

7

our approaches will work on such platforms. Therefore,
we see no reason why emulations of botnets with mil-
lions of nodes should not be possible using our approach.

Significant challenges remain to be addressed to make
emulation of botnets with millions of nodes a viable ad-
junct to other research methods in studying botnets. First
among these are developing scalable methods for visual-
ization and analysis of data.

We hope to use our emulation testbed, KANE, to de-
termine the optimal strategies to deal with botnets. Our
plan is to infect a virtual Internet with a botnet and have
it operate. We can then test counter measures, refine
them, and repeat the experiment if necessary. This type
of experiment has the benefit in that it allows us to con-
duct malware analysis in a contained, representative, and
cleanable environment.

To conclude, emulation enables a highly repeatable,
flexible test laboratory for conducting experiments on
malware that cannot be conducted in any other way. Em-
ulation of a whole botnet at its natural scale will allow re-
searchers to see the big picture of how a botnet operates
in a way that they cannot see either from smaller scale ex-
periments with bot code, from simulation, or from obser-
vations of botnets on the Internet. The other approaches
remain valuable and necessary, but we believe being able
to run an actual sized botnet in a controlled environment
will allow for a new type of experimentation that will be
a much needed additional tool for researchers.

Acknowledgments

Thanks to IBM and Rusty Russel for Lguest. There have
been many important contributors to the KVM software
on Linux, and it is not possible to thank them all, but
thanks to the authors of KVM, KSM, and QEMU.

Thanks also to Kevin Pedretti of Sandia for his valu-
able assistance with experiments in large-scale virtual-
ization on the Jaguar supercomputer at Oak Ridge Na-
tional Laboratory. We also wish to thank the folks at
Oak Ridge who keep Jaguar running for letting us run
on it, and thanks also to the Department of Energy’s IN-
SIGHT award of time on Jaguar to our group for making
our experiments possible.

We also wish to thank Matt Leiniger and the Hyper-
ion team at Lawrence Livermore National Laboratory for
letting us run experiments on the Hyperion cluster there
early on in our project.

This work was funded by the Laboratory Directed
Research and Development (LDRD) program at Sandia
National Laboratories. Sandia National Laboratories is
a multiprogram laboratory operated by Sandia Corpo-
ration, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Ener-

gys National Nuclear Security Administration under con-
tract DE-AC04-94AL85000.

References

[1] A BU RAJAB, M., ZARFOSS, J., MONROSE, F., AND TERZIS,
A. A multifaceted approach to understanding the botnet phe-
nomenon. InProceedings of the 6th ACM SIGCOMM conference
on Internet measurement(New York, NY, USA, 2006), IMC ’06,
ACM, pp. 41–52.

[2] BARFORD, P.,AND BLODGETT, M. Toward botnet mesocosms.
In Proceedings of the first conference on First Workshop on Hot
Topics in Understanding Botnets(Berkeley, CA, USA, 2007),
USENIX Association, pp. 6–6.

[3] BENZEL, T., BRADEN, R., KIM , D., NEUMAN , C., JOSEPH,
A., SKLOWER, K., OSTRENGA, R., AND SCHWAB, S. Expe-
rience with deter: a testbed for security research. InTestbeds
and Research Infrastructures for the Development of Networks
and Communities, 2006. TRIDENTCOM 2006. 2nd International
Conference on(2006), pp. 10 pp. –388.

[4] CALVET, J., DAVIS , C. R., FERNANDEZ, J. M., MARION, J.-
Y., ST-ONGE, P.-L., GUIZANI , W., BUREAU, P.-M., AND SO-
MAYAJI , A. The case for in-the-lab botnet experimentation: cre-
ating and taking down a 3000-node botnet. InProceedings of the
26th Annual Computer Security Applications Conference(New
York, NY, USA, 2010), ACSAC ’10, ACM, pp. 141–150.

[5] DAVIS , C., NEVILLE , S., FERNANDEZ, J., ROBERT, J.-M.,
AND MCHUGH, J. Structured peer-to-peer overlay networks:
Ideal botnets command and control infrastructures? InComputer
Security - ESORICS 2008, S. Jajodia and J. Lopez, Eds., vol. 5283
of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2008, pp. 461–480. 10.1007/978-3-540-88313-530.

[6] HENDRIKS, E. A., AND M INNICH , R. How to build a fast and
reliable 1024 node cluster with only one disk.The Journal of
Supercomputing 36, 2 (2006), 171–181.

[7] K ANG, B. B., CHAN-TIN , E., LEE, C. P., TYRA , J., KANG,
H. J., NUNNERY, C., WADLER, Z., SINCLAIR , G., HOPPER,
N., DAGON, D., AND K IM , Y. Towards complete node enu-
meration in a peer-to-peer botnet. InProceedings of the 4th In-
ternational Symposium on Information, Computer, and Commu-
nications Security(New York, NY, USA, 2009), ASIACCS ’09,
ACM, pp. 23–34.

[8] K ANICH , C., KREIBICH, C., LEVCHENKO, K., ENRIGHT, B.,
VOELKER, G. M., PAXSON, V., AND SAVAGE , S. Spamalytics:
an empirical analysis of spam marketing conversion. InProceed-
ings of the 15th ACM conference on Computer and communi-
cations security(New York, NY, USA, 2008), CCS ’08, ACM,
pp. 3–14.

[9] K IVITY , A., KAMAY , Y., LAOR, D., LUBLIN , U., AND

L IGUORI, A. kvm: the Linux virtual machine monitor. InPro-
ceedings of the Linux Symposium(2007), vol. 1, pp. 225–230.

[10] M INNICH , R., AND M IRTCHOVSKI, A. Xcpu: a new, 9p-based,
process management system for clusters and grids. InCLUSTER
(2006), IEEE.

[11] NUNNERY, C., SINCLAIR , G., AND KANG, B. B. K. Tumbling
down the rabbit hole: Exploring the idiosyncrasies of botmaster
systems in a multi-tier botnet infrastructure. InProceedings of
the 4th Usenix Workshop on Large-Scale Exploits and Emergent
Threats(Berkeley, CA, USA, 2011), USENIX Association.

[12] PORRAS, P. Inside risks: Reflections on conficker.Commun.
ACM 52(October 2009), 23–24.

[13] PORRAS, P., SAIDI , H., AND YEGNESWARAN, V. A multi-
perspective analysis of the storm (peacomm) worm. Tech. rep.,
SRI International, October 2007.

8

[14] PORRAS, P., SADI , H., AND YEGNESWARAN, V. A foray into
confickers logic and rendezvous points. InIn USENIX Workshop
on Large-Scale Exploits and Emergent Threats(2009).

[15] RUSSELL, R. virtio: towards a de-facto standard for virtual i/o
devices.SIGOPS Oper. Syst. Rev. 42, 5 (2008), 95–103.

[16] SOTTILE, M., AND M INNICH , R. Supermon: a high-speed clus-
ter monitoring system. InCluster Computing, 2002. Proceedings.
2002 IEEE International Conference on(2002), pp. 39 – 46.

[17] VRABLE, M., MA , J., CHEN, J., MOORE, D., VANDEKIEFT,
E., SNOEREN, A. C., VOELKER, G. M., AND SAVAGE , S. Scal-
ability, fidelity, and containment in the potemkin virtual honey-
farm. InProceedings of the twentieth ACM symposium on Oper-
ating systems principles(New York, NY, USA, 2005), SOSP ’05,
ACM, pp. 148–162.

[18] WEAVER, R. A probabilistic population study of the conficker-
c botnet. In Passive and Active Measurement, A. Krishna-
murthy and B. Plattner, Eds., vol. 6032 ofLecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2010, pp. 181–190.
10.1007/978-3-642-12334-419.

[19] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND

JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks.SIGOPS Oper. Syst. Rev. 36(De-
cember 2002), 255–270.

[20] WRIGHT, C. Ksm: A mechanism for improving virtualization
density with kvm. Inlinuxcon2009(2009).

9

