SAND2011-2849C

Large-scale Botnet Analysis on a Budget

Ron Minnich, Andrew Sweeney, Kristopher Watts, Don Rudish
John Floren, David Fritz, Keith Vanderveen, Yung Ryn Choe, C&sxcio
Sandia National Laboratories

Abstract ing Internet and geography. Such botnets are resilient to

L - outages of either countries or single organizations, and
Botnets are complex, distributed systems consisting Of‘pulling the plug” is a challenge. Some botnets have

many tens of thousands of individual instances of mal'even been known to detect probing and autonomously

ware which, once connected, are resilient, self-healingrespond with a denial of service attack [13]. An un-

confcrollable from a central place. Ha_lving a controlled derstanding of botnet behavior at large scale in a con-
environment to analyze the spread of infectious malwarg,ineq environment will facilitate the defense and dis-

and behavior of botnets at Internet scale is essential tﬂwantling of botnets. We propose such a system suitable
better understanding botnet behavior, effectively dismanfor running on a cluster comprised of commodity hard-

tling them, and designing countermeasures. In this papef 3 e hosting upwards of hundreds of thousands of virtual
we present an architecture that we have created to enable_ \hines (VMs).

these capabilities. Using novel techniques, we are able

to boot up to 1,200 Linux virtual machines (VMs), or Traditionally, studies of botnet software and behavior
200 Microsoft Windows 7 VMs on a single machine, by have relied nearly exclusively on reverse engineering of
over-committing the processor and memory resources o¥aptured bot binaries, dynamic analysis of bot binaries
the system to an unusual degree. We discuss our applic&Sing sandboxes, and observation of botnets “in the wild”

tion of these techniques to achieve large-scale emulatioHsSing honeynets/honeyfarms [17] or through insertion of
of malware for botnet analysis and describe our initialan instrumented false bot controlled by researchers into

findings. an extant botnet [11, 8]. As noted by studies such as [4]
and [2], however, the aforementioned techniques cannot
provide the “big picture” of a botnet's operations, nor

1 Introduction do they provide a reliable means to conduct repeatable

experiments into possible means of detecting, defending
Botnets are complex, distributed systems consisting ofgainst, or neutralizing botnets.
many tens of thousands of individual instances of mal-
ware orbotswhich, once connected, are resilient, self- 4 : .
healing, controllable from a central place, and sometime etwork testbed capable of holding an entire operational

capable of sophisticated autonomous behavior. The ow _ptnet Ina “network_s_andbox.” Like sandb_oxmg Of. |nQ|-
ers and operators of botnets (knowntmgherdery use vidual bots, acapa_bnlty to sandbox.an en_tlre fupcnonlng
them to send spam, steal login credentials and other inEotnet,wouId prowde the o.pportumt‘}/ to my:astlgate 'the
formation from victims, and engage in other criminal ac- otnets behavior and fu!wctlon, test “what if scenarios,
tivities [1]. Botnets are widespread on the Internet anaand reliably re-’run expenments to g_enerate confld_ence n
show few signs of going away. It is likely that the readerthe researche_rs_qonclusmns, all without threatening the
has hosted a botnet at some point, and almost certain thagfety and reliability of the Internet.
the reader’s organization has. In the remainder of this paper, we discuss the creation
Recent botnets have shown surprising resiliency to atef a network testbed capable of running the largest bot-
tempts to remove them [12]. Sophisticated botnets suchets discovered to date on the Internet, and initial exper-
as Storm, Conficker, and Waledac have used peer-to-pe@nents conducted on this testbed with a real botnet. We
(P2P) networks for command and control [7, 5], result-list the following as the primary contributions of this pa-
ing in an overlay network independent of the underly-per:

The solution, as recognized by [4] and [2], is to build a

e Application of novel techniques to over-budget re- of resources), Potemkin mostly focused on and facili-
sources for scaling VM guest capabilities in a clus-tated interactions between its VMs and the rest of a bot-
ter environment. net residing on the Internet, as opposed to our project, in

which bots on different VMs interact with each other in

¢ Implementation of a prototype testbed for scalablea closed environment.
malware analysis in a contained environment.

Barford et al. [2] demonstrated a botnet testbed with
We have developed a prototype testbed consisting of 8imjlar goals to our project and designed to scale to thou-
520-node cluster, capable of hosting 62,000 Windows %ands of bots. The system, called the Botnet Evaluation
VMs or 600,000 Linux VMs. In this testbed we have run Environment’ was built to run on Emulab [19] enabled
real botnet malware and we make observations about it§etwork testbeds such as DETER [3], and contained es-
behavior. sential services such as DNS and IRC to provide a closed

The rest of this paper is organized as follows. In Sec-environment within which a fully formed botnet could

tion 2, we discuss related efforts to study botnets at scalgunction, albeit at the scale of hundreds to thousands of
In Section 3, we discuss challenges and solutions we'vgots.
contributed towards making efficient use of computing

resources to achieve large-scale performance. Section 4 pore recently, Calvet et al. hosted a captive Waledac
describes the early malware experiments we have run iotnet with 3000 bot instances [4]. They achieved this
our environment, including the platform on which it was using a 98 node server farm and roughly 30 VMs per
run and the behavior we observed. In Sections 5 and ghysicaﬂ node, with each VM presumably containing an
we describe future work in this area and summarize oufnstance of Windows infected with the Waledac bot. Cal-
conclusions. vet et al. give convincing reasons why emulation of a
botnet at scale is a necessary adjunct to reverse engi-
neering of botnet binaries and observations of botnets
in the wild in order to truly understand botnet behavior,

)))) and they were able to discover a bottleneck in Waledac'’s
Previous research into understanding the behavior of bol- ¢ = traffic that likely led to the botherder's switch to

pets has fo!lowed th.e approaches of reverse engineefymmon session keys and use of unsigned server com-
ing and static analysis of captured bot code [14], breakiangs (previously assumed to be design flaws). They
ing into an extant botnet[11], running actual bot code aliate that they would not have made this discovery had

a small scale[13], or creating a simulation of the DOt-yhay ot had the capability to observe the botnet running
net's network behavior and observing that [5]. While 4 the thousand node scale.

all of these approaches have increased our understand-
ing of botnets, what has been missing is an experimental
platform capable of running a full-sized botnet in a con-
trolled environment.

2 Related Work

Our project has similar goals to the Barford and Calvet
emulation testbeds, but we were able to improve on the
scale of experiments reported by both groups by more
than an order of magnitude owing to our use of lighter
2.1 Scalable platforms to host bots weight virtual machines, substantial efforts to decrease
the memory footprints of Linux and Windows instances,
Some prior research has sought to achieve scalablese of scalable cluster management software, and use
tools for better understanding botnets and other malof larger clusters commonplace in the high performance
ware. The Potemkin project [17] used virtualization, computing community.
over-subscription of physical resources, and late binding
of resources to requests to achieve a high fidelity hon- Both [4] and [2] demonstrated testbeds capable of
eyfarm capable of scaling to tens of thousands of emholding a few hundred to a few thousand nodes of a bot-
ulated hosts. Unlike our project, the goal of Potemkinnet, and both correctly point out the need to study botnets
was not to actually run a botnet in its entirety, but ratherat scale to truly understand them. However, we believe
to present a large number of apparently vulnerable systhat even greater scale is needed, because actual bot-
tems to elicit attempts from the Internet to compromisenets can consist of hundreds of thousands to millions of
the systems, and thereby learn about the exploits used hyodes [18]. Trying to understand botnets and their inter-
malware, understand the behavior of malware after it hagctions with (and effects on) networks by extrapolating
compromised a new host, and capture samples of mafrom studies done at two to three orders of magnitude
ware. While some of the techniques used by Potemkirsmaller scale risks missing crucial effects that manifest
are similar to our project (lots of VMs, over-subscription themselves in the real botnet on the real Internet.

Malware Malware || Malware e although our contributions focus on the ability to
scale simulation on even commodity hardware, the
MegaTux Node Lnux - f e) inux Linux ability to port our system to high-end systems (e.g.,
lguest lguest lguest Blue Gene and Cray XT) for the largest experiments
is extremely useful, and these systems consist com-
Linux Host pletely of diskless nodes;
e it has not proven practical to share a single disk be-
Malware Malware | | Malware tween thousands of VMs on a physical machine;
MegaWin Node , .) and
. Windows Windows Windows
(Windows)
KVM KVM KVM e were our environment ever connected to the real In-
_ ternet, we would want to be able to erase any down-
Linux Host loaded data with a simple power cycle.
Our approach is based on the one'Sifatform, us-
Malware Malware Malware . . R
ing diskless mode. However, rather than using a net-
Wine Wine Wine work filesystem (NFS) mounted root filesystem, we ex-
MegaWin Node) _ _ tend the oneSIS model to support a root filesystem based
. Linux Linux Linux . .
(Wine) entirely in memory—a RAM (random access memory)
KvM KVM KvM disk. On clusters, the kernel and initial RAM disk (ini-
trd) are downloaded via a preboot execution environment
Linux Host (PXE).

The initrd includes a kernel and initrd for the guest

Figure 1: Architectural diagrams of a MegaTux node andVMs. Both the host and guest initrd include enough files

MegaWin nodes based on Windows and Wine. to boot the host OS. Any additional programs that need to
be executed are later pushed to the node using software

built in-house for efficient transfer to large numbers of
3 Scalable Computing Resources cluster nodes. The result is a pure memory-based node
that has no dependencies on external filesystem mounts.
Creating an environment of Internet proportions with
limited physical machines necessitates the use of vir
tual machines (VMs). To maximize the number of vir- 3.2 MegaTux
tual machines that can be deployed on each physical m&he MegaTux project is targeted at environments of
chine, resources such as processor (CPU) and memoB00,000 to tens of millions of Linux kernels. It con-
on host systems must be used efficiently and even ovesists of a number of components. A full description of
committed. We achieve this by lightening the effective MegaTux is outside the scope of this paper, but we pro-
footprint of the host system, the virtual machine monitorvide a brief overview.
(VMM) and the guest operating systems (OS). However,
any optimizations must not |mped¢ the end goal qf belng\3_3 VMatic
able to run botnets at scale, monitor their behavior, and
make meaningful observations. VMatic is a tool for rapidly provisioning virtual machine
In this section we discuss the methodology we haveenvironments. Itis an extension of Sandia’s oneSIS clus-
employed to enable deployment of large numbers ofer management system, modified so that nodes can be
VMs on commodity hardware in a cluster environment.operated with a RAMdisk root, instead of a local disk or
Our techniques aim to run both Linux- and Microsoft NFS root file system. We have tested scaling of VMatic
Windows-based malware, and we call these environto over 4096 physical nodes, and over 4.5 million nodes,
mentsMegaTuxand MegaWin respectively, referring to as of this writing.
the scale we aim to achieve. Architectural diagrams of VMatic can operate with any virtual machine tech-
our models are illustrated in Figure 1. nology, although we currently only use either Iguest
or KVM. We initially targeted only Linux guests, but
) VMatic has been able to support Windows guests with
3.1 Host Environment no changes. VMatic can also, if needed, support mixed

The host OS on each physical machine runs in a diSkIes\édeows/Lmux configurations. We see no limits to the

environment. There are several reasons for this: Lhttp://onesis.org/

guest OSes we deploy on VMatic; if they will work un- (("MARK: 1266084142.710273")0x4336 "00x4336 s1 #0")
der a Linux virtual machine, they will work on VMatic. ~ (("MARK: 1266084143.272552")0x924e "o0x924e si #0")
Using a simple configuration file and command set,(("MARK: 1266084145.387336")0x9879 "o00x9879 s1 #0")

VMatic produces system images that can be uploaded to

compute nodes via network boot. The user is able tq:igure 2: Sample of Pushmon output. MARK: denotes

specify the configuration of both the host and guest im+, o yjx epoch time from the root node and is embedded
ages. Through the use of multiple VMatic configuration with the original messages using S-expressions.
files, a user can maintain separate build configurations

for a variety of experiments on multiple clusters. We can

do test runs on our laptops, real runs on clusters, angtee, i.e. the program that initiates the million or more

“hero” runs on the large Cray XT systems at Oak Ridgecommands. Daemons in internal nodes of the tree con-

National Labs. trol processes below them, and relay data up and down
Once the physical host starts booting, it has all the inthe tree.

formation it needs to configure its own services and con- Each slave is a master of all the VM guests on its node.

figure its local virtual machines. The MAC addresses,Hence, the process repeats for the VMs on each physical

virtual Ethernet devices, and routes to other networks ar@ode.

all computed as a node starts up; there is no central store

of MAC addresses for all the VMs. A single Linux vir-

tual machine takes about one second to fully boot.

In addition to provisioning HPC systems, VMatic can Pushmon is a hierarchical monitoring system built from
also be used to provision lightweight VM’s on a local Supermon[16]. Like Supermon, Pushmon uses S-
machine. This has proven to be invaluable for our de-expressions to describe the data, and is designed for hi-
velopment work as it gives each team member the abilityerarchy, with Pushmon nodes functioning as both clients
to boot their own virtual cluster on their laptop. On our and servers. Unlike Supermon, Pushmon relies on a push
laptops, we can reconfigure and start 100 new VMs inmodel, with data being periodically pushed from the
less than 30 seconds. This speed makes testing easy. Deaves to the root. Pushmon is also self-configuring, with
velopers now have an immediate, convenient, and relithe nodes using a low-cost computation to determine
able way for performing automated testing on their codewhere their parent in the tree is, up to the root. Finally,
sets without consuming precious time on limited HPCpushmon is designed not to just group S-expressions to-
resources. This mechanism was used in the creation qfether, as Supermon does, but also to perform computa-
our first botnet prototype with successful results whentions on the S-expressions so as to reduce the data load
we started scaling out. on the network. The computations to be performed can
themselves be defined by S-expressions, and interpreted,
allowing a great deal of flexibility, up to and including
symbolic computing. See Figure 2.

Gproc is the latest in a line of process startup systems we Data load on the network is also reduced when the
have developed, starting with BProc[6] and continuingVM'’s relationship to their host OS is taken into account.
with XCPU[10]. Gproc uses a tree spawn mechanismWhen considering the fast communication path between
similar to that of XCPU, and also moves all the librariesa VM and its host OS, Pushmon can be used as an ef-
a given command needs to run, as does XCPU. Instealgctive aggregator to collect messages from their child
of the ad-hoc command tree spawn technique that BPro¥Ms before pushing to the root minimizing load on the
uses, Gproc sets up a persistent tree of servers that rghysical network.

duces the tree spawn overhead. Gproc uses intermediateWe are working to build an efficient virtio[15] trans-
nodes in the tree to aggregate I/O from remote processeport for guest to host Pushmon communications. In spite

The BProc daemon structure has two different pro-of the plethora of virtio software that has been written,
grams: the master on a control node and slave daemoribere is nothing that resembles an efficient pipe. We plan
on each compute node. This model scales well to severdp remedy this problem.
thousand nodes but no further. Gproc daemons adopt the
XCPU model: the daemons are aI_I the same code, an§_6 Megawin
can adopt the role of server or client. A process tree
hence consists of a root server, intermediate daemondnlike the case for Linux-based OSes, we do not have
playing both roles, and a set of daemons at the leavesccess to the source code for Microsoft Windows, which
The ultimate clients are at the leaves of the tree, i.e. indipresents unique challenges to minimizing the resources
vidual processes. The ultimate server is at the root of thé requires to run as a VM. First, due to its closed nature,

3.5 pushmon

3.4 gproc

we have no way to modify Windows to run paravir- Since we cannot eliminate the GUI completely, we miti-
tual guest—that is, one that is aware that it is runninggate the issue by using the Windows Embedded version
as a VM and optimizes accordingly. Therefore, in orderand replacing the standard Windows desktop environ-
to run Windows as a guest OS, we must use full virtu-ment with the bblean desktdpThese changes decrease
alization, which imposes costs that affect both memoryboth the static and dynamic memory footprint, and the
usage and performance. We detail our experiences rurbblean desktop decreases CPU utilization because it ex-
ning Windows under full virtualization in this section, cludes features such as the anti-aliasing of fonts.
as well as an alternative solution for running Windows- The result of our optimizations is a Windows image
based malware using Wirfe that consumes 512MB for the dynamic footprint per VM
and shares a 1GB static footprint across other VMs on

. o the same host.
3.6.1 Full virtualization

We currently use the Kernel Based Virtual Machine 3.6.2 Memory deduplication
(KVM) software to support fully virtualized Windows
guests [9]. Using this platform, we combine two strate-
gies to maximize the efficiency of running a Windows
VM: minimizing the size of the Windows OS image as
much as possible; and using Linux and KVM capabili-
ties to the maximum extent possible.

The memory-only operation of our host machines im-

Even with the improvements to static and dynamic mem-
ory footprint, host resources limit booting anything more
than a nominal number of Windows VMs on a given host,
e.g., around five on a host system with 12GB of memory.
To further optimize the resources of the host machine, we
exploit new capabilities of Linux virtualization, in par-

. il q iv simplifies th bticular a new software system called KSM [20]. KSM,
proves image lie access and greatly SIMpifes the probz o 4,6 5thors describe it, “is code running in the Linux

lem of wiping the machine, but complicates the problemkernel scanning the memory of all the VMs running

of managing Windows 'mages, because everything is "on a single host, looking for duplication and consoli-
memory. Windows can be considered to have two classe&

of memory footprintsstaticanddynamic The static im ating" [20]. KSM accomplishes this by periodically
. S . ’ Ny i Il that ligible for deduplicati d
age is the disk image which Windows boots and whlchsCannlng 8" pages thatare Shgible for deduplication an

merging identical ones into copy-on-write pages. The

is stored as a file in the root filesystem of the host. Th|suse of KSM is especially effective with our workload,

?oot'able 'mg%.e Cin Ee reduced t?] 1GB, but fur:her r%qucés there exists a large amount of mergeable data across
lon 1S very dificult, because we have no way to mo |f_y undreds of identical VMs, with the exception of some
the Windows build to eliminate components not essentia untime activity

for our experimentation, such as the graphical user inter- Using KSM to increase the number of Windows VMs
face (GtUD' The dynimlc image is the memory Windows running on a host an order of magnitude beyond its nat-
grows to occupy as itruns. i _ i . ural limits introduces some key problems. KSM cannot
In standard usage a bootable Windows image file willg.a ang merge pages faster than we can allocate them
only work for a single VM instance because Windows through launching new VMs. To facilitate this, we mod-
images contain a lot of per-machine information. Beé-ified the KSM interface to force the KSM thread to only

cause booting large numbers of Windows VM guests iSscan memory belonging to processes that we designate.
not feasible or efficient if each has its own 1GB image, 1his allows us to focus KSM on newly created VMs

we use the following methodology to enable many gueSt%uring launch, or on key VMs that we know are better

to share a common Windows image on a single Nosty,asches for deduplication during runtime. KSM can op-

Rather than using a Windows image in the “poweredg ate on any number of processes that we inform it to at
off” state to boot each VM, we use the "snapshot” of an ngint in time. The result is the ability to more intel-

almost-booted Windows VM, taken previously, as a startyigentiy manage significantly over-budgeted memory.
ing point in the boot process for each VM on a host. Each Figure 3 illustrates launching many Windows 7 VMs
VM is appropriately configured once the snapshot is ré 4 host with KSM. The number of distinct VMs to fo-
sumed, so each guest gets its own personality, including,,q o1, js varied from 0 (default KSM behavior) to 5. In
network configuration. Also, this speeds up the boot proyja most naive case, we launch VMs until we run out of

cess, reducing per-VM startup time from approximatelyphysical memory, and block until KSM merges enough

two minutes to only a few seconds since much of th€yemqary to continue launching. With our modification,
booting was done prior to taking the VM snapshot.

) ; * we can force KSM to focus on newly launched VMs,
Another Windows component affecting the efficient yhich saves time and maintains enough free memory to
use of computing resources is the desktop environmentygiq out-of-memory events when running VMs become

2http://www.winehg.org/ Shttp://bb4win.sourceforge.net/bblean/

bers of Windows installations, which might be costly and

KSM Naive vs PID Focus - 100 VMs @ 512mb each

: infeasible, Wine is freely available under an open source
soool Naive] license.
I Focus set: 1
7000 Focus set. 2|1 Because Wine is an implementation of the Windows
Focus set: 3 API, it might not be suitable for some scenarios, such
Z 6000 Focus set: 4|1 as the spread of malware through the exploit of a vul-
2 5000 Focus set: 5| nerability in the Windows implementation. However, for
E the purposes of this paper, we focus on running botnets
< 4000 . . .
m comprised of hosts already infected with malware.
:L_’ 3000
2000¢ 3.7 Compatibility tradeoffs
rooor The process of minimizing the resource footprint used
00 100 260 300 400 500 600 700 800 by VM images allows scalability through efficient use
Time (s) of resources. However, it also presents potential chal-
lenges with regard to execution compatibility in the slim-
Figure 3: KSM: Free memory vs. Time mer environments. If programs (in this case botnet mal-

ware) executed in such environments fail to detect cer-

tain functionality, then they might: refuse to run, know-
more active. In practice, we are able to launch ten VMsing they are subjects of analysis; behave differently from
at a time, focusing KSM on all ten. When KSM com- how they would in an unmodified environment; or fail
pletes a full scan, we launch another ten VMs. Usingto run, because of dependencies on missing components.
this process, we were able to boot 200 Windows 7 Em1n any of these cases, the observed behavior from macro-
bedded VM instances on a machine with only 12GB ofanalysis might be misleading or counter-productive.
memory. In the future we intend to do implement several provi-
sions to mitigate these circumstances, making use of our
in-house isolated malware testing and reverse engineer-
ing environment. First, we plan to a full-system com-

In addition to our efforts to minimize the memory foot- Parison in terms of file and registry existence in a full
print of a full Microsoft Windows image, we have ex- €nvironment compared to the virtual environment. Sec-

plored other alternatives to running Windows-based mal©nd, we intend to compare micro behaviors of individual
ware in our environment. Wine implements the Win- malware specimens with their collaborative behavior in
dows application programming interface (API), allowing the full virtualization environment.
Windows software to run in other environments, such as
Linux. 4 Experimentation

Building on the MegaTux model, we run Wine on
the Linux-based VMs. Standard Wine includes provi- In this section we describe the prototype testbed built on
sions for special features, such as graphics and soundommodity hardware on which we've applied the tech-
However, since our focus is on running Windows-basedhiques discussed earlier in the paper to boot large num-
malware, we can minimize the footprint associated withpers of VMs for botnet analysis. We also describe some
Wine by eliminating libraries not essential to its execu- of the behaviors we've observed in initial experimenta-
tion when building the Wine binary. We reduced the sizetion.
of the Wine binary about 5%, from 195MB to 186MB,
using this process.

While the Wine software is not equivalent to a Win- 4.1 Testbed
dows installation, in many cases it will suit our purposesWe have created a cluster as a prototype testbed for large-
and provide a flexibility that we might not otherwise have scale botnet analysis This system, dubbed the Knowl-
with a Windows image. One benefit mentioned previ-edge Acquisition Network Emulation system (KANE), is
ously is that the binary itself can be reduced because itanique from other clusters in that it is comprised of true
source is available. Also, Wine running in a VM envi- off-the-shelf commodity personal computers (PCs), pur-
ronment inherits the virtualization benefits of the under-chased for less than $500,000 (including auxiliary hard-
lying guest OS, including reducing the memory footprint ware). The nodes are comparable to home desktop PCs
incurred by the guest OS, as well as paravirtualization caconnected to the Internet using a single Ethernet connec-
pabilities. Finally, in contrast to licensing for large num tion.

3.6.3 Wine

Head node guest VMs are networked on the same broadcast domain
using a software switch run by the host OS. All host OSes
maintain static routes to all other host OSes, enabling
global routing in the testbed.

Rack 1 Central Rack 13
I- —_ — — 1 Switch |' e |
I | oo | N I g 4.2 Experiments
| | | Theindividual bots ranona Windows 7 image _which we

= ... B S = were able to make significantly smaller than is typical.
| | | | We determined that the bots, once booted, registered with
l_node 1 nodedo | l:)de 481 node 520 the IRC command and control channel, and we could is-

—_ - — —_ - - sue commands to the bots.

Figure 4: This figure illustrates the basic layout of the
KANE cluster. 5 Future Work

Significant challenges remain to be addressed to make
emulation of botnets with millions of nodes a viable ad-
The KANE cluster is composed of 13 racks having ﬁvejunct to other research methods in studying botnets. First
shelves each. Each rack contains 40 compute nodes a@'ond these are developing scalable methods for visual-
a gigabit Ethernet (GbE) switch which connects them all iZation and analysis of data. While we have developed
All rack switches are interconnected at a central switch,pro'[_Otype tools.for monitoring, the Cha”enge IS 1N ,Ef'
and nodes are managed using a single frontfezad fectively collecting and aggregating useful information
node connected to the central switch. While individual ffOM €ach VM without overwhelming network or com-

compute nodes only have a single GbE interface, thé;)uting resources, and without affecting experimentation.

head node is equipped with four channel-bonded inter/Ve inténd to extend our prototype tools to incorporate

faces to provide greater throughput. The head node als$'€Se desirable characteristics. o
provides services, such as the Dynamic Host Configu- Another capability alluded to earlier in this paper
ration Protocol (DHCP), Domain Name System (DNS), IS the gblllty .to deploy arbitrary network topologies,
and Trivial File Transfer Protocol (TFTP) for PXE boot. '€Seémbling either known networks or large networks
Figure 4 illustrates this layout. with Internet-like characteristics, complete with dynami

KANE differs from other network testbeds in that it routing. We intend to implement this in a future version
is primarily focused on scaling, leveraging virtualiza- OI our\t/ol\(zlset for managing the setup and configuration
tion technology. For example, KANE nodes use the |n-Of OUr VIVIS.
tel Core i7 processor, which makes virtualization more
transparent to guest OSes. Unlike the DETER testbeds Conclusions
which is distributed across a geographic region, the

KANE testbed is isolated from the outside Internet andjn this paper we have presented an approach to achieving
is entirely contained within our research laboratory. Net-realistic scale in emulation of botnets in a laboratory set-
work properties, such as latency, are artificially emulateding. Our approach builds on lightweight virtualization
or introduced using software. technology, leveraging novel techniques for efficient use

KANE serves as our dedicated testbed environmentof computing resources by both Linux- and Windows-
Using our setup, we can prototype experiments prior tthased VMSs.

running on bigger systems, where our time on the system We have performed initial experiments with actual

4.1.1 Hardware configuration

is more scarce. malware in our testbed environment built from commod-
ity hardware. Using this relatively small cluster of 520
4.1.2 Networking nodes, we successfully ran an instance of the virut botnet

with 62,000 members.
Networking for the VMs is an essential element of our While the tools and techniques reported in this paper
testbed. Ideally our environment would support arbitraryhave been developed for and prototyped on our commod-
network topologies, including routing protocols. For the ity testbed cluster, they have been designed with the vi-
present, we have focused on host scalability in a two-sion to run them on the largest supercomputers available.
tier hierarchical architecture. Each host OS running on &@reliminary experiments conducted on the Jaguar super-
physical node acts as a router to the VMs it hosts, and theomputer at Oak Ridge National Laboratory indicate that

our approaches will work on such platforms. Therefore,gys National Nuclear Security Administration under con-
we see no reason why emulations of botnets with mil-tract DE-AC04-94AL85000.

lions of nodes should not be possible using our approach.

Significant challenges remain to be addressed to makReferences

emulation of botnets with millions of nodes a viable ad-
junct to other research methods in studying botnets. First™!
among these are developing scalable methods for visual-
ization and analysis of data.

We hope to use our emulation testbed, KANE, to de-
termine the optimal strategies to deal with botnets. Our 2
plan is to infect a virtual Internet with a botnet and have
it operate. We can then test counter measures, refine
them, and repeat the experiment if necessary. This typeg)
of experiment has the benefit in that it allows us to con-
duct malware analysis in a contained, representative, and
cleanable environment.

To conclude, emulation enables a highly repeatable,
flexible test laboratory for conducting experiments on [4]
malware that cannot be conducted in any other way. Em-
ulation of a whole botnet at its natural scale will allow re-
searchers to see the big picture of how a botnet operates
in a way that they cannot see either from smaller scale ex-
periments with bot code, from simulation, or from obser- [5]
vations of botnets on the Internet. The other approaches
remain valuable and necessary, but we believe being able
to run an actual sized botnet in a controlled environment
will allow for a new type of experimentation that will be
a much needed additional tool for researchers. [6]

Acknowledgments (7]

Thanks to IBM and Rusty Russel for Lguest. There have
been many important contributors to the KVM software
on Linux, and it is not possible to thank them all, but
thanks to the authors of KVM, KSM, and QEMU.

Thanks also to Kevin Pedretti of Sandia for his valu-
able assistance with experiments in large-scale virtual-
ization on the Jaguar supercomputer at Oak Ridge Na-
tional Laboratory. We also wish to thank the folks at
Oak Ridge who keep Jaguar running for letting us run
on it, and thanks also to the Department of Energy’s IN-
SIGHT award of time on Jaguar to our group for making
our experiments possible. [10]

We also wish to thank Matt Leiniger and the Hyper-
ion team at Lawrence Livermore National Laboratory for
letting us run experiments on the Hyperion cluster theréll]
early on in our project.

This work was funded by the Laboratory Directed
Research and Development (LDRD) program at Sandia
National Laboratories. Sandia National Laboratories ig*?
a multiprogram laboratory operated by Sandia Corpo—[13]
ration, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Ener-

(8]

[9]

ABU RAJAB, M., ZARFOSS J., MONROSE F., AND TERZIS,

A. A multifaceted approach to understanding the botnet phe-
nomenon. IrProceedings of the 6th ACM SIGCOMM conference
on Internet measureme(itlew York, NY, USA, 2006), IMC '06,
ACM, pp. 41-52.

BARFORD, P.,AND BLODGETT, M. Toward botnet mesocosms.
In Proceedings of the first conference on First Workshop on Hot
Topics in Understanding Botne{8erkeley, CA, USA, 2007),
USENIX Association, pp. 6—6.

BENZEL, T., BRADEN, R., KiM, D., NEUMAN, C., JDSEPH

A., SKLOWER, K., OSTRENGA R., AND SCHWAB, S. Expe-
rience with deter: a testbed for security research.Tdatbeds
and Research Infrastructures for the Development of Neksvor
and Communities, 2006. TRIDENTCOM 2006. 2nd International
Conference 012006), pp. 10 pp. —388.

CALVET, J., Davis, C. R., FERNANDEZ, J. M., MARION, J.-

Y., ST-ONGE, P.-L., GQuizANI, W., BUREAU, P.-M., AND So-
MAYAJI, A. The case for in-the-lab botnet experimentation: cre-
ating and taking down a 3000-node botnetPhoceedings of the
26th Annual Computer Security Applications Conferefidew
York, NY, USA, 2010), ACSAC '10, ACM, pp. 141-150.

Davis, C., NEVILLE, S., FERNANDEZ, J., ROBERT, J.-M.,
AND MCHUGH, J. Structured peer-to-peer overlay networks:
Ideal botnets command and control infrastructures€dmputer
Security - ESORICS 2008. Jajodia and J. Lopez, Eds., vol. 5283
of Lecture Notes in Computer Scien&pringer Berlin / Heidel-
berg, 2008, pp. 461-480. 10.1007/978-3-540-883B®:5

HENDRIKS, E. A., AND MINNICH, R. How to build a fast and
reliable 1024 node cluster with only one diskhe Journal of
Supercomputing 3& (2006), 171-181.

KANG, B. B., CHAN-TIN, E., LEE, C. P., TYRA, J., KANG,

H. J., NUNNERY, C., WADLER, Z., SNCLAIR, G., HOPPER

N., DAGON, D., AND KiM, Y. Towards complete node enu-
meration in a peer-to-peer botnet. Pmoceedings of the 4th In-
ternational Symposium on Information, Computer, and Commu
nications SecurityNew York, NY, USA, 2009), ASIACCS '09,
ACM, pp. 23-34.

KANICH, C., KrREIBICH, C., LEVCHENKO, K., ENRIGHT, B.,
VOELKER, G. M., ImXSON, V., AND SAVAGE, S. Spamalytics:

an empirical analysis of spam marketing conversiorPrioceed-
ings of the 15th ACM conference on Computer and communi-
cations securityNew York, NY, USA, 2008), CCS '08, ACM,
pp. 3-14.

KiviTy, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. kvm: the Linux virtual machine monitor. IRro-
ceedings of the Linux Symposi{2007), vol. 1, pp. 225-230.

MINNICH, R., AND MIRTCHOVSKI, A. Xcpu: a new, 9p-based,
process management system for clusters and gridSLUSTER
(2006), IEEE.

NUNNERY, C., SNCLAIR, G.,AND KANG, B. B. K. Tumbling
down the rabbit hole: Exploring the idiosyncrasies of boti®as
systems in a multi-tier botnet infrastructure. Pnoceedings of
the 4th Usenix Workshop on Large-Scale Exploits and Emergen
Threats(Berkeley, CA, USA, 2011), USENIX Association.

PORRAS, P. Inside risks: Reflections on conficke€ommun.
ACM 52(October 2009), 23-24.

PORRAS, P., SAIDI, H., AND YEGNESWARAN, V. A multi-
perspective analysis of the storm (peacomm) worm. Tech. rep.,
SRI International, October 2007.

[14]

(18]

[16]

[17]

(18]

[19]

[20]

PORRAS, P., SADI, H., AND YEGNESWARAN, V. A foray into
confickers logic and rendezvous points.IflJSENIX Workshop
on Large-Scale Exploits and Emergent Thre@309).

RUSSELL, R. virtio: towards a de-facto standard for virtual i/o
devices.SIGOPS Oper. Syst. Rev.,42(2008), 95-103.

SOTTILE, M., AND MINNICH, R. Supermon: a high-speed clus-
ter monitoring system. I€luster Computing, 2002. Proceedings.
2002 IEEE International Conference ¢2002), pp. 39 — 46.

VRABLE, M., MA, J., CHEN, J., MOORE, D., VANDEKIEFT,

E., SNOEREN, A. C., VOELKER, G. M., AND SAVAGE, S. Scal-
ability, fidelity, and containment in the potemkin virtual feyn
farm. InProceedings of the twentieth ACM symposium on Oper-
ating systems principlg®New York, NY, USA, 2005), SOSP '05,
ACM, pp. 148-162.

WEAVER, R. A probabilistic population study of the conficker-
c botnet. InPassive and Active Measurememt. Krishna-
murthy and B. Plattner, Eds., vol. 6032lafcture Notes in Com-
puter ScienceSpringer Berlin / Heidelberg, 2010, pp. 181-190.
10.1007/978-3-642-12334-10.

WHITE, B., LEPREAU, J., STOLLER, L., Riccl, R., Gu-
RUPRASAD, S., NEwBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networkS8IGOPS Oper. Syst. Rev. @Be-
cember 2002), 255-270.

WRIGHT, C. Ksm: A mechanism for improving virtualization
density with kvm. Inlinuxcon20092009).

