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Abstract— Microgrids are envisioned containing several in-
terconnected sources supplying power to multiple loads. While
many technologies may be used for generation, such as fossil
fuels or renewables, there will likely be some amount of storage
capacity. Efficient use of the stored energy is the motivation
for this work. This paper focuses on developing closed loop
control laws that define optimal load forms. Optimal will be
defined as a combination of energy dissipation rate and power
flow. In general, the control laws are nonlinear and thus the
optimal load forms are nonlinear functions of the states of the
network. A tutorial LC circuit is used to illustrate the method
for developing the optimal load that efficiently uses the available
stored energy.

I. INTRODUCTION

A microgrid is a modular version of a traditional power
grid containing the key elements of generation, transmis-
sion, distribution, controllable loads, storage, and separability
from other power grids. Microgrids are envisioned that are
scalable, and when connected together will have the same
functionality as a large, regional power grid. Introduction of
renewable sources poses a particular challenge for microgrids
due to their variability (e.g. wind and photovoltaic sources)
and potential for causing grid voltage instability when they
become a large portion (roughly greater that 20%) of the
overall electrical supply. The ability to optimally control the
loads will be important as more renewables and dispatchable
loads, such as plug-in vehicle fleets, are incorporated into
microgrids. In this paper we consider a very simple LC
circuit and a controllable load. The capacitor has an initial
storage state and an optimal control law is used to transfer
the capacitor energy to the load. After introducing the system
equations and the optimal control law, simulation results are
used to illustrate the competing effects of minimizing load
voltage, load power and transfer time.

Pandya and Joshi present a recent review of optimal power
flow concepts in reference [3]. The work here differs from the
traditional network-centric power flow studies by focusing on
transient behavior. Nonlinear control of similar circuits have
been investigated previously. For example, Sira-Ramirez et
al. [4] developed a sliding mode controller with application
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to a boost converter. Using a passivity-based approach for
the sliding mode controller they showed that the integrated
stored energy was bounded. Beccuti et al. also considered a
boost converter where the optimal control objective was to
minimize inductor current in the presence of changes in the
load or the source voltage [1].

II. SYSTEM DESCRIPTION AND CONTROL LAW
FORMULATION

The series LC circuit is described by Eq. 1 where q(t)
is the charge on the capacitor, vL(t) is the load voltage, L
is the inductance, and C is the capacitance. The current in
the circuit is q̇(t). The initial conditions on the circuit states
[q, q̇] are [q0, 0] and thus the capacitor energy, Ec = 1

2cq
2, is

non zero, whereas EL = L
2 q̇

2, the initial inductor energy, is
identically zero. The energy in the load is Es = EL + Ec,
or Es =

∫ t

0
vLq̇dτ where vLq̇ is the load power.

Lq̈(t) +
1
C
q(t) = vL(t) (1)

The cost function is given in Eq. 2 and is a weighted sum
of the integral of the load power squared and the integral
of the load voltage squared. The values of k1 and k2 are
constrained to being positive and are simply used to balance
the objective function goals of minimizing a power-related
quantity to load voltage as the energy is being moved from
the capacitor to the load.

J =
∫ ∞

0

L(q, q̇, vL) dt =
∫ ∞

0

[
k1(vLq̇)2 + k2(vL)2

]
dt

(2)
The second method of Lyapunov is a convenient mecha-

nism for deriving control laws for both linear and nonlinear
systems. A classical approach will be used as described in
reference [2]. By specifying a Lyapunov candidate function,
V, a control law is constructed that minimizes Eq. 2 while
ensuring asymptotic stability. The method is summarized
below as applied to Eq. 1.

The sufficient condition for the optimal control law, v∗L,
is that

V̇ (q, q̇, v∗L) = −L(q, q̇, v∗L) (3)

where V is a radially unbounded, positive definite, Lyapunov
candidate function. Thus, a control law can be formed based
on the Lyapunov candidate function selected. Consider the
V of Eq. 4 which is the total energy of the circuit.
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V =
1
2c
q2 +

L

2
q̇2 (4)

The derivative of Eq. 4, and substitution of Eq. 1, is shown
in Eq. 5.

V̇ =
1
C
qq̇ + Lq̇q̈

=
1
C
qq̇ + Lq̇

[
− 1
LC

+
1
L
vL

]
= q̇vL

(5)

The control law is found by apply Eq. 3 to Eq. 5 and gives
the v∗L of Eq. 6.

q̇v∗L = −k1(v∗Lq̇)
2 − k2(v∗L)2 (6)

Equation 6 gives two possible solutions for v∗L, with one
of them being the trivial v∗L = 0 case. The nonzero solution
is shown in Eq. 7

v∗L = − q̇

k1q̇2 + k2
(7)

where k1 = 0 minimizes load voltage and k2 = 0 minimizes
the power during the energy transfer from the capacitor to
the load.

Before considering other Lyapunov candidate functions or
simulation results, further exploration of the control law of
Eq. 7 is insightful. First, let’s consider the value of the cost
function of Eq. 2 when using this control law.

J =
∫ ∞

0

[
(k1q̇

2 + k2)v2
L

]
dt

=
∫ ∞

0

[
(k1q̇

2 + k2)
(

q̇

k1q̇2 + k2

)2
]
dt

=
∫ ∞

0

q̇ vLdt = Es

(8)

Regardless of the values of k1 and k2 the numerical value
of the cost will always be equal to the energy transferred
from the capacitor to the load. Next, we’ll examine limiting
values of k1 and k2 and their effect on v∗L. First consider the
case where k1 is sufficiently small that the term k1q̇

2 � k2.
This corresponds to the minimum voltage case and results
in an approximately linear control law of equation Eq. 9.

v∗L1
≈ − q̇

k2
(9)

The resulting closed loop system has the characteristic equa-
tion s2 + 1

Lk2
s + 1

Lc = 0 and its roots can be placed by
selecting k2 while also ensuring the constraint on k1 is in
effect.

Next consider the case where k2 is small. Certainly if
k2 = 0 the control law of Eq. 7 is singular. However,
this condition is not approached for k2 � 1. As k2 is
made increasingly small the resulting maximum q̇ (current)
becomes proportionally smaller. Therefore k1q̇

2 � k2 once

again and the control law is approximated by Eq. 9. It should
also be noted that the resulting characteristic becomes very
lightly damped as k2 is increased and the time required to
transfer the energy from the capacitor to the load increases.

The final behavior of interest is when the control law
operates in a nonlinear regime. This occurs when k1q̇

2 and
k2 are roughly the same order of magnitude. In that case
energy oscillates between the capacitor and the inductor
while simultaneously extracting a component for the load.
This occurs for the k2 � 1 case described above as well, but
when operating in the nonlinear regime the rate of transfer
can be made significantly faster.

These three phenomena, where the control law is approxi-
mately linear, and fully nonlinear, will be investigated in the
next section using a numerical simulation of the system.

III. RESULTS

A MATLAB simulation of the system was created to
investigate the effect of k1 and k2 on the form of the optimal
control solution to Eq. 1, and the time required to transfer
the initial capacitor energy to the load. The simulation used
a fixed-time, fourth order Runge-Kutta solver and a time
step of 10−6. The inductance was set to 1 Henry and
the capacitance, C, to 10−6 farads. In the remainder we’ll
consider the case where k1q̇

2 � k2, then k2 << 1, and
finally a specific example of the nonlinear operating regime
of the closed loop control.

A. Case 1: Linear Regime with k1q̇
2 � k2

The values of k1 = 1 and k2 = 0.01 were used. Figure 1
shows q and q̇ where it is clear that over the entire simulation
k1q̇

2 � k2 is indeed true. The capacitor charge decays with a
lightly damped, linear response. This is because the damping
introduced by the control law of Eq. 9, 1/k2, is significantly
smaller than the stiffness of the system, 1/C. Figure 2 shows
the energy of the three devices where the energy primarily
moves between the capacitor and inductor and only slowly
is accumulated by the load.
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Fig. 1. Case 1, linear control regime, charge and charge rate.
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Fig. 2. Case 1, linear control regime, component energies.

B. Case 2: Linear Regime with k2 � 1
The values of k1 = 1 and k2 = 1

10000 were used. Figure 3
shows the capacitor charge and charge rate. The charge rate,
q̇, magnitude causes the condition k1q̇

2 � k2 even though
k2 � 1. The approximate characteristic equation introduced
earlier is s2 + 104s + 106 = 0 with a dominant root at
s = −100. Therefore the approximate time constant of
the response is 0.01 seconds and is consistent with the q
response of Figure 3. Figure 4 compares the energy in all
three devices, where the energy of the load is equal to the
instantaneous evaluation of the objective function.
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Fig. 3. Case 2, linear control regime, charge and charge rate.

C. Case 3: Nonlinear Regime

The values of k1 = 10, 000 and k2 = 1
2000 were used so

that the magnitudes of k1q̇
2 and k2 where similar during part

of the simulation and the nonlinear behavior of the control
law would be present. The charge rate, or current, is shown in
Figure 5 along with the capacitor charge. The underdamped
responses deviate from that of a linear second order system
confirming that a the nonlinear control law effect is present.
The energy of all the devices is shown in Figure 6 where
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Fig. 4. Case 2, linear control regime, component energies.

energy is being moved between the capacitor and the inductor
while incrementally being harvested by the load. The load
voltage is shown in Figure 7 and the power in Figure 8. Since
this case has significant weight applied to minimizing power,
the power level is capped. If k1 is increased the maximum
power reduces. It should be noted that the time for charge
transfer is about 0.01 seconds which is much faster than the
previous two cases.
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Fig. 5. Case 3, nonlinear control regime, charge and charge rate.

IV. CONCLUSIONS

A very simple, linear LC circuit was considered for the
closed loop, optimal control of a load. The goal was to move
an initial capacitor charge to the load while maintaining sta-
bility and minimizing a specified cost function. The nonlinear
control law was based on a particular Lyapunov candidate
function, system energy, that facilitated a viable control law
solution. For many operating conditions the control law is
approximately linear. However, by selecting the weights that
trade-off power and voltage penalties, the control law can
be made to operate in a nonlinear regime. In this condition
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Fig. 6. Case 3, nonlinear control regime, component energies.
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Fig. 7. Case 3, nonlinear control regime, load voltage.
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Fig. 8. Case 3, nonlinear control regime, load power.

energy moves between the capacitor and the inductor while
being consumed by the load whenever the current is positive.

The advantage of the nonlinear operating regime is that a
balance can be enforced between power and voltage. This is
not possible when operating in the linear regime since the
response is dominated by either a power optimal or voltage
optimal scenario.
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