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Abstract— Developing requirements for renewable power
sources that are able to meet specified load needs is the moti-
vation for this work. The approach used here is to formulate
energy storage as an optimal control problem. Alternative
objective functions are applied to a tutorial LC circuit yielding
insight into the relationship between the supply characteristics
and the rate of storage. Given a specified storage target and
time, several objective functions are considered. These are
used to form a spectrum of voltage source time histories that
minimize the objective functions while achieving the storage
target. Although the system being considered is linear, the
complexity of the solutions arises due to the nonlinearity of the
objective functions employed. The resulting source characteris-
tics provide insight into desirable renewable source character-
istics. More importantly, this work describes a methodology for
addressing more complex renewable integration designs using
an optimal control approach.

I. INTRODUCTION

A microgrid is a modular version of a traditional power
grid containing the key elements of generation, transmis-
sion, distribution, controllable loads, storage, and separability
from other power grids. Microgrids are envisioned that are
scalable, and when connected together will have the same
functionality as a large, regional power grid. Introduction of
renewable sources poses a particular challenge for microgrids
due to their variability (e.g. wind and photovoltaic sources)
and potential for causing grid voltage instability when they
become a large portion (roughly greater that 20%) of the
overall electrical supply. Increasing the amount of storage is
one expensive solution approach to facilitate high-penetration
renewables in a microgrid while maintaining stability. Mi-
crogrid design and analysis methods that minimize storage,
maximize renewables and maintain stability are therefore of
great interest.

Network power flow has been considered in many previous
studies with a nice summary provided by the recent paper
by Pandya and Joshi [2]. This work differs from network
analysis by focusing on the transient behavior associated with
charging. Similar pulse solution were examined in the paper
by Beccuti et al. for optimal control of a boost converter [1].
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Optimization will be an important part of microgrid design
when considering high-penetration renewables. The focus of
this work is the optimal charging of a capacitor in a very
simple circuit consisting of a voltage source, an inductor and
a capacitor, described by the differential equation of Eq. 1.
The source input, v(t), is assumed to be a series of n time-
delayed steps as shown in Eq. 2 where h(t) is the unit step
function. The final time, tf , and final charge level, qf , are
specified.

Lq̈(t) +
1
C
q(t) = v(t) (1)

v(t) =
n∑
i=1

Ai · h(t− Ti) (2)

The remainder of the paper will use well-known results
for generating the constraint equations on the discontinuous
input parameters, Ai and Ti, such that qf is achieved at t =
tf with q̇(tf ) = 0. By selecting n larger than the minimum
value required to achieve a solution, the opportunity to select
the parameters of v(t) to minimize particular cost functions
is created.

II. OPTIMIZATION PROBLEM DESCRIPTION

By defining nondimensional time as τ ≡ ωt
2π with ω =√

1/(LC) the nondimensional form of Eq. 1, a simple
harmonic oscillator, can be written as shown in Eq. 3.

q′′(τ) + (2π)2q(τ) = (2π)2v̄(τ) (3)

where q′′(τ) is the second derivative of q with respect to
τ and v̄ ≡ Cv. Note that the units of q and v̄ are both
Coulombs in this nondimensional time form. Given values
for τf and qf and assuming the form of v̄ given by Eq. 4
the optimization problem is to find the Ai and Ti such
that q(τf ) = qf = 1, q̇(τf ) = 0 and the cost function is
minimized. We will also constrain τf < 1 which means
that the final charge time will be less than one period of
oscillation.

v̄(τ) =
n∑
i=1

Ai · h(τ − Ti) (4)

Several cost functions will be examined where we note
that the supply power is Ps(τ) = v̄(τ)q′(τ) and its energy
provided to the circuit is Es(τ) =

∫ τ
0
Ps(χ)dχ. Next we’ll

look at four different cost functions, and justify narrowing
the field to three based on the structure of the optimization
problem.
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Consider first the optimal energy cost function given in
Eq. 5. Since the final state condition, q′(τf ) = 0 is imposed,
the energy in the inductor, EL(τ) = 1

2Lq
′(τ)2 at τ = τf will

be zero. Since there are no losses in the circuit, all the energy
extracted from the supply has been put into the capacitor to
achieve the end state of q(τf ) = qf = 1. So, Jenergy is only
a function of τf and is independent of the free parameter T2.
Minimization of Jenergy will not be considered further.

Jenergy =
∫ τf

0

v̄q′dτ (5)

The remaining three cost functions are shown in Eq. 6. The
first objective function, Jv̄ , is a measure of the normalized
total supply effort whereas the second two functions measure
normalized power supplied. The units for the three objective
functions, from top to bottom, are C2, C4, and C2 where C
in this context denotes Coulombs.

Jv̄ =
∫ τf

0

v̄2dτ

JP 2 =
∫ τf

0

P 2
s dτ

JPmax
= max

τ
(Ps)

(6)

Now that the optimization problem has been defined,
a brief review of input shaping is given in terms of its
relationship to helping to find the v̄ step sequence that
minimizes the objective functions of Eq. 6.

Input shaping is a method to generate input commands to
move oscillatory systems while guaranteeing zero residual
oscillation [3]. By solving for the system response to a
set of parameterized impulses, several constraint equations
can be developed that will ensure zero residual oscillation.
The same approach is used here. Instead of simply stating
the constraints, a brief overview of their development is
provided.

The constraints on Ai and Ti of Eq. 4 are readily found
by forming the solution to Eq. 3 and then requiring that
q(τ) = 1 ∀ τ ≥ τf . This solution is given in Eq. 7 after
factoring with respect to sin 2πτ and cos 2πτ .(

n∑
i=1

Ai − 1

)
+

(
n∑
i=1

Ai sin(2πTi)

)
cos(2πτ)+

+

(
n∑
i=1

Ai cos(2πTi)

)
sin(2πτ) = 0

(7)

Eq. 7 gives the three necessary conditions for achieving
the optimization problem solution listed in Eq. 8. A fourth
condition is simply that Tn = τf .

Tn − τf = 0,
n∑
i=1

Ai − 1 = 0

n∑
i=1

Ai sin(2πTi) = 0,
n∑
i=1

Ai cos(2πTi) = 0

(8)

If the first step starts at T1 = 0 and the first two constraints
of Eq. 8 are used to resolve out Tn and A1, then we have
2n − 3 parameters to select and two remaining constraints
from Eq. 8. The case of n = 2 leaves only one parameter
and two constraints. This is solvable for a particular value of
τf = 0.5. Unwinding the nondimensionalization yields the
very familiar result of ending the charging at the half-period
time.

The problem considered here is for the general τf case
where a minimum of n = 3 steps are needed. This gives
three parameters to solve the remaining two constraints of
Eq. 8. This remaining degree of freedom can be used to
achieve achieve either of the minimization objectives.

Now that we are focusing on the three step solution the
constraints can be written explicitly as given in Eq. 9.

A1 +A2 cos (2πT2) +A3 cos (2πτf ) = 0
A2 sin (2πT2) +A3 cos (2πτf ) = 0

1−A1 −A2 −A3 = 0
(9)

The three expressions in Eq. 9 can be combined into the
two constraints of Eq. 10.

A2 [−1 + cos (2πT2)] +A3 [−1 + cos (2πτf )] = −1
A2 sin (2πT2) +A3 cos (2πτf ) = 0

(10)

The optimization problem can now be parameterized in
the single quantity T2 which is the start time of the second
pulse. The optimal value of T2 is easily found by sweeping
through values of T2 within [0, τf ] and selecting the one that
gives the minimum value of the three cost functions of Eq. 6.
For each value of T2, the corresponding values of A2 and
A3 are readily solved from Eq. 10. The value of A1 can then
be obtained from the last expression in Eq. 9.

Before moving on to the results section it should be
noted that the n > 3 case was also investigated using a
numerical optimization code. For all the cases considered
the parameters converged to a solution that eliminated all but
three steps. Though this result is only anecdotal it provided
some justification for considering the three step scenario.

III. RESULTS

A MATLAB simulation of the system was created to find
the optimal T2 values. The solver was a fixed-time, fourth
order Runge-Kutta with a time step of 0.0001 seconds. The
excessively small time step was merely to allow four digit
discrimination of T2 values. Seventeen final time cases were
examined over [0.1, 0.9] in increments of 0.05. For each
τf the T2 parameter was swept between [0.01, τf − 0.01]
using 60 increments while computing the Jv̄ , JP 2 and
JPmax

objective functions for each case. Finally, the T2

value corresponding to the minimum value for each objective
function was extracted. These results are shown in Table I.
A sample time history of the input and output is shown in
Figure 1.

The minimum values of JP 2 and JPmax are not shown in
Table I since they have a very expected trend of decreasing



as τf increases. The values of Jv̄ are shown in Figure 2
where a distinct minimum is evident in the τf < 0.5 region.
It’s clear that if small τf is required, an optimal value of
about 0.45 is desirable. It should be noted that the sensitivity
of Jv̄ is high in this region. Uncertainty in system L and C
parameters could result in undesirably large Jv̄ . Thus a more
conservative value of τf = 0.6 would be a better choice.

TABLE I
OPTIMAL SECOND PULSE TIME, T2 , FOR ALL 0.1 ≤ τf ≤ 0.9

T2

τf Effort Power Max Power
0.10 0.050 0.050 0.053
0.15 0.075 0.075 0.084
0.20 0.103 0.100 0.121
0.25 0.129 0.121 0.167
0.30 0.164 0.127 0.220
0.35 0.214 0.093 0.285
0.40 0.276 0.061 0.358
0.45 0.368 0.024 0.433
0.50 0.000 0.000 0.000
0.55 0.072 0.363 0.363
0.60 0.097 0.387 0.397
0.65 0.126 0.399 0.409
0.70 0.146 0.418 0.418
0.75 0.168 0.424 0.424
0.80 0.218 0.439 0.439
0.85 0.273 0.453 0.453
0.90 0.347 0.465 0.465
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Fig. 1. Sample input, v̄, and output, q, for the τf = 0.3 case. The value
of T2 is 0.220, and is the optimal JPmax solution.

Figure 3 shows the shape of all three objective functions
as T2 is swept from low to high values. The T2 optimal
values are shown with the square, circle, and dot markers
for minimum effort, power, and maximum power. For this
case of τ = 0.3 the objective functions have well defined
extremums. It should be noted that for some values of τf
the objective functions have local extremums, and for others
the extremum is at a boundary point.

Figure 4 compares the optimal T2 values as a function of
τf for all three objective functions. The value of T2 has been
further normalized by dividing by τf . This provides more
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Fig. 2. The optimal Jv̄ values for 0.25 ≤ τf ≤ 0.9 where a local
minimum occurs at τf ≈ 0.45.
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Fig. 3. Comparison of all three objective functions evaluated for all T2

sweep values for the example case of τf = 0.3. The square, circle, and dot
show the location of the maximum values. The costs have been normalized,
indicated by the J̄i notation, allowing the cost function shapes to all be
seen on one figure.

insight into where T2 occurs relative to the entire charging
time. The T2 values corresponding to optimal power are
shown as dots and open circles whereas the effort optimal
T2 values are given squares. For fast charging, τf < 0.2,
all three solutions indicate an optimal T2 that is between
50%−60% of τf . For 0.2 ≤ τf ≤ 0.5 the optimal effort and
maximum power values of T2 increase and approach τf . In
contrast, the power optimal solution indicates small values of
T2 that approach zero as τf → 0.5. The τf = 0.5 case is the
singular solution where only two steps can be used. It is also
a transition point for the structure of the optimal values of T2

for all three objective functions. For τf > 0.5 the two power
related objective functions yield the same solution whereas
the effort optimal T2 moves from roughly 10% of τf up to
40% of τf by τf = 0.9.
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Fig. 4. Normalized T2 as a function of the final charging time τf for all
three objective functions.

IV. CONCLUSIONS
Optimal capacitor charging was investigated where the

input was postulated as being discontinuous, leaving only one
free parameter. This allowed the calcuation of the globally
optimal solution for the three cost functions of Eq. 6 to
be found. The solutions are all quite different, but from a
practical perspective, the most useful is likely the JPmax

case. This allows the capacitor to charge within the specified
time while keeping the maximum power requirement for the
supply as low as possible. When τf approaches the half-
period value, T2 approaches zero. Thus the three step input
degrades to two. It is interesting that the maximum power
solution and the integrated power squared solutions are the
same for τf greater than the half-period value.

Although this is very simple example, the approach can be
readily applied to more complex storage charging scenarios.
It’s very likely that an n > 3 number of steps would be
needed to accommodate multiple mode systems. It should be
noted that the constraint equations of Eq. 8 can be extended
to systems with m natural frequencies as given by Eq. 11
resulting in 2(1 + m) equations and 2n − 1 unknowns if
the first pulse starts at t = 0. The quantities in Eq. 11 are
not nondimensionalized since there are multiple ωi in the
equations.

Tn − tf = 0
n∑
i=1

Ai − qf = 0

n∑
i=1

Ai sin(ωjTi) = 0, j = 1 . . .m

n∑
i=1

Ai cos(ωjTi) = 0, j = 1 . . .m

(11)
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