

Title:

Volatile Gas Capture in Nanoporous Metal-Organic Frameworks (MOFs)

Authors & affiliations:

Dorina F. Sava¹, Mark A. Rodriguez², Karena W. Chapman³, Peter J. Chupas³, Jeffery A. Greathouse⁴, Paul S. Crozier⁵, and Tina M. Nenoff¹

¹*Surface and Interface Sciences, Sandia National Laboratories, Albuquerque, NM 87185, USA.*

²*Materials Characterization, Sandia National Laboratories, Albuquerque, NM 87185, USA.*

³*X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.*

⁴*Geochemistry, Sandia National Laboratories, Albuquerque, NM 87185, USA.*

⁵*Scalable Algorithms, Sandia National Laboratories, Albuquerque, NM 87185, USA.*

Abstract: (Your abstract must use **Normal style** and must fit in this box. Your abstract should be no longer than 300 words. The box will ‘expand’ over 2 pages as you add text/diagrams into it.)

The design and synthesis of nanoporous materials with built-in information for specific applications require critical understanding of host-guest interactions that occur at molecular level. The timely study presented herein focuses on the structure-property relationship between metal-organic frameworks (MOFs) and physisorbed volatile iodine (I_2) gas.

A main concern associated with nuclear energy as an alternative energy source is appropriate nuclear waste management. Radio- I_2 is a highly mobile gas resulted during nuclear fuel reprocessing or nuclear reactor accidents. It addresses particular challenges; the ^{129}I isotope has a very long half-life (1.57×10^7 years), and is involved in human metabolic processes. Therefore, its safe capture and storage is of utmost importance.

Here we report on the efficient capture of I_2 gas into known MOFs (ZIF-8 and HKUST-1), as well as novel materials developed in our group. High resolution synchrotron powder X-ray diffraction, pair distribution function analysis, and molecular modeling were used to identify structural details of I_2 binding locations in these systems. Two distinct I_2 sites were crystallographically refined in ZIF-8; they are centered over alternating 6-member ring windows in the material with sodalitic topology. Close monitoring of I_2 -framework contacts reveals that adsorption is mainly due to favorable interactions with the 2-methylimidazole organic linker. The β -cages of ~ 1.2 nm in diameter act as molecular reservoirs, as the sorbed I_2 is confined within nanochannels, and cannot readily diffuse out. Incorporation of the I_2 -loaded MOFs into glass composite materials as long-term waste forms was also investigated. This was monitored by thermal stability studies, electron microscopy, and chemical durability tests, which indicate that I_2 is successfully retained in the glass composite matrices.

*Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Important notes:

Do **NOT** write outside the grey boxes. Any text or images outside the boxes **will** be deleted.

Do **NOT** alter the structure of this form. Simply enter your information into the boxes.

The form will be automatically processed – if you alter its structure your submission will not be processed correctly.