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ABSTRACT

Experts agree that the exascale machine will comprise processors
that contain many cores, which in turn will necessitate a much
higher degree of concurrency. Software will require a minimum
of a 1000 times more concurrency. Most parallel analysis and vi-
sualization algorithms today work by partitioning data and running
mostly serial algorithms concurrently on each data partition. Al-
though this approach lends itself well to the concurrency of current
high performance computing, it does not exhibit the appropriate
pervasive parallelism required for exascale computing. The data
partitions are too small and the overhead of the threads too large
to make effective use of all the cores in an extreme scale machine.
This paper introduces a new visualization framework designed to
exhibit the pervasive parallelism necessary for extreme scale ma-
chines. We demonstrate the use of this system on a GPU processor,
which we feel is the best analog to an exascale node that we have
available today.

Index Terms: D.1.3 [Software]: Programming Techniques—
Concurrent Programming

1 INTRODUCTION

Most of today’s visualization libraries and applications are based
off of what is known as the visualization pipeline [19,27]. The
visualization pipeline is the key metaphor in many visualization de-
velopment systems such as the Visualization Toolkit (VTK) [45],
SCIRun [33], the Application Visualization System (AVS) [49],
OpenDX [1], and Iris Explorer [16]. It is also the internal mecha-
nism or external interface for many end-user visualization applica-
tions such as ParaView [46], Vislt [26], VisTrails [6], MayaVi [40],
VolView [24], OsiriX [44], 3D Slicer [38], and BiolmageXD [23].

In the visualization pipeline model, algorithms are encapsulated
as filter components with inputs and outputs. These filters can be
combined by connecting the outputs of one filter to the inputs of
another filter. The visualization pipeline model is popular because
it provides a convenient abstraction that allows users to combine
algorithms in powerful ways.

Although the visualization pipeline lends itself well to the con-
currency of current high performance computing [29, 35, 39, 51],
its structure prohibits the necessary extreme concurrency required
for exascale computers. This paper describes the design of the Dax
toolkit to perform Data Analysis at Extreme scales. The computa-
tional unit of this framework is a worklet, a single operation on a
small piece of data. Worklets can be combined in much the same
way as filters, but their light weight, lack of state, and small data ac-
cess make them more suitable for the massive concurrency required
by exascale computers and associated multi- and many-core proces-
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Figure 1: Comparison between Dax pipeline execution and traditional
visualization pipeline execution. Dax makes it possible to achieve
higher degree of concurrency by moving the iteration over mesh el-
ements out of the algorithm and letting the framework manage the
parallelism.

sors. Figure 1 highlights the difference between a Dax pipeline exe-
cution with a traditional visualization pipeline provided by existing
visualization frameworks such as VTK.

2 RELATED WORK

Since its inception, many improvements have been made to the vi-
sualization pipeline to allow it to function well with large data. By
dividing tasks, pipelines, or data amongst processes, the serial algo-
rithms of a visualization pipeline can work in parallel with little or
no modification [2]. In particular, the data parallel mode, partition-
ing the data and replicating the pipeline, performs well on current
high performance computers [10].

The basic function of a visualization pipeline is to process data
flowing from upstream to downstream. More recent visualiza-
tion pipeline implementations, such as those in VTK, ParaView,
and Vislt, implement more advanced control mechanisms and pass
meta-data throughout the pipeline. These control mechanisms can,
for example, subset the data in space [13] or time [7] based on the
needs of the individual computing units. Recent work is coupling
this mechanism with query-driven visualization techniques [17] to
better sift through large data sets with limited resources.

These control mechanisms can also be used to stream data, in
pieces, through the pipeline [3]. More recent advances allow us
to prioritize the streaming, thus allowing to compensate for high
latency of streaming by presenting the most relevant data first [4].
This in turn has lead to multi-resolution visualization [34,52]. Mul-



tiple resolutions further hide limited resource latency by first pre-
senting low-detailed results and then iteratively refining them as
needed. This assumes, of course, that a multi-resolution hierar-
chy of data is already built (a non-trivial task for unstructured
data). This work is being implemented in a traditional visualization
pipeline, but could be leveraged in many other types of frameworks,
including the one proposed for this project.

Another recent research project extends the visualization-
pipeline streaming mechanism by automatically orchestrating task
concurrency in independent components of the pipeline [50]. The
technique adapts the visualization pipeline to multi-core proces-
sors, but it has its limitations. There is a high overhead with re-
gard to each execution thread created; they require isolated buffers
of memory for input and output and independent call stacks, which
typically run many calls deep. Furthermore, algorithms in the fil-
ters are optimized to iterate over sizable data chunks, which will
not be the case with massive multi-threading. At some point the al-
gorithms will have to be reengineered to process small data chunks
or themselves be multithreaded. It will be necessary to leverage a
threading paradigm like the one proposed for this project to engi-
neer this kind of change on a full-featured toolKkit.

An alternative data analysis and visualization architecture is im-
plemented by the Field Encapsulation Library (FEL) [8]. FEL pro-
vides abstractions that allows programs to access the structure and
fields of a mesh independently from the data storage. More impor-
tantly, FEL uses C++ template constructs to build functional defi-
nitions of fields. These fields compute values on demand when re-
quested. These functional fields are similar in nature to the worklets
defined in our work.

Although the main concerns addressed by FEL, mesh flexibility
and memory overhead, is complementary to this project, FEL does
not adequately manage the complexity of massive multi-threading.
To support pervasive parallelism we need to hide the complexity of
work distribution. Also, as the name implies, the Field Encapsu-
lation Library is primarily concerned with defining, accessing, and
operating on fields. There is no mechanism for topological opera-
tions that change or create meshes. Nor is there any explicit method
for aggregation. In order to address the varied data analysis and vi-
sualization needs, this project enables these features.

Another system with constructs similar to the framework pro-
posed for this project is provided by Intel Threading Building
Blocks (TBB) [41], a popular open-source C++ library for multi-
core programming. In addition to high-level parallel constructs
such as parallel looping and reduction operations, TBB also pro-
vides a simple pipeline execution environment. Like Dax, TBB’s
pipeline mechanism partitions data based on available hardware
threads, handing-off the resulting partitions to caller-supplied func-
tions that each iterate over their assigned ranges to perform compu-
tation. Thus, TBB provides a hybrid abstraction where callers are
isolated from some of the complexity of scheduling work across
multiple cores, but each function is still responsible for iteration
over its subset of the data.

This approach is appropriate for current architectures where an
individual host has a relatively small number of hardware threads,
but requires that function authors continue to deal with data orga-
nization and iteration issues on an ad-hoc basis. Further, TBB does
not address issues of scheduling or communication across multiple
hosts in a distributed platform. Dax envisions a stricter separation
of responsibilities where worklets are responsible for computation
only, leaving data retrieval and inter-processor communication to
separate executive components.

The MapReduce programming model [14] is also similar in spirit
to our proposed framework. Like our approach, MapReduce simpli-
fies parallel programming by defining algorithms in terms of local,
stateless operations. However MapReduce, not being designed as
such, does not have all the conventions necessary for a fully fea-

tured visualization and data analysis library. For example, express-
ing local topological connections (e.g. cells connected to vertices,
vertices connected to cells, or cells connected to cells) are difficult
to express. The combining of predefined computation units is not
directly supported, nor is the specification of topological, spatial,
or temporal domains. In contrast, our proposed system provides the
primitives with which visualization and data analysis programmers
are accustomed.

3 MOTIVATION

As the scale of supercomputers has progressed from the teraflop to
the petaflop we have enjoyed a resiliency of the message passing
model (embodied in the use of MPI) as an effective means of at-
taining scalability. However, as we consider the high performance
computer of the future, the exascale machine, we discover that this
concurrency model will no longer be sufficient. All industry trends
infer that the exascale machine will be built using many-core pro-
cessors containing hundreds to thousands of cores per chip. This
change in processor design has dramatic effects on the design of
large-scale parallel programs. As stated by a recent study by the
DARPA Information Processing Techniques Office [42]:

The concurrency challenge is manifest in the need for
software to expose at least 1000 x more concurrency in
applications for Extreme Scale systems, relative to cur-
rent systems. It is further exacerbated by the projected
memory-computation imbalances in Extreme Scale sys-
tems, with Bytes/Ops ratios that may drop to values as
low as 1072 where Bytes and Ops represent the main
memory and computation capacities of the system re-
spectively. These ratios will result in 100x reductions in
memory per core relative to Petascale systems, with ac-
companying reductions in memory bandwidth per core.
Thus, a significant fraction of software concurrency in
Extreme Scale systems must come from exploiting more
parallelism within the computation performed on a sin-
gle datum.

Put simply, efficient concurrency on exascale machines requires
a massive amount of concurrent threads, each performing many op-
erations on a small and localized piece of data.

Other studies concur. The Workshop on Visual Analysis and
Data Exploration at Extreme Scale [22] corroborates the need for
“pervasive parallelism” throughout visual analysis tools and that
data access is a prime consideration for future tools. The Interna-
tional Exascale Software Project’s recent road map [15] also states
a required thousand fold increase in concurrency and that applica-
tions may require ten billion threads. The road map also notes a
change in I/O and Memory that will “affect programming models
and optimization.” Careful consideration of memory access is also
expected to have a dramatic effect on energy consumption as much
of the power of an exascale system will be expended moving data.

Will visualization systems need to run on these exascale sys-
tems? They undoubtedly will. Although it has been a common
practice to use specialty high performance platforms for visualiza-
tion and graphics [53], this trend is coming to an end. The cost of
creating specialty visualization computers that are capable of ana-
lyzing data generated from large supercomputer runs is becoming
prohibitive [12]. Consequently, researchers are beginning to lever-
age the same supercomputers used for creating the data [36,37,54].
This, coupled with a renewed interest in running visualization in-
situ with simulations to overcome file I/O constraints [43, 47, 48],
ensures that high performance visualization code will run on the
same technology as the simulation code for the foreseeable future.

Visualization pipelines fit poorly into this massive concurrency
model; the granularity of the pipeline computational unit, the filter,
is too large. Each filter must ingest, process, and produce an entire



data set when invoked. Large scale concurrency today is achieved
by replicating the pipeline and partitioning the input data amongst
processes [2]. However, extreme scale computers would require
the data to be broken into billions of partitions. The overhead of
capturing the connectivity information between these partitions as
well as the overhead of executing these large computation units on
such small partitions of data is too great to make such an approach
practical.

To understand why, consider the sobering comparison between
the Jaguar XTS5 partition, a current petascale machine, and the pro-
jections for an exascale machine of by the International Exascale
Software Project RoadMap [15] given in Table 1. Because proces-
sor clock rates are not increasing, an exascale computer requires a
thousand-fold increase in the number of cores. Furthermore, trends
in processor design suggest that these cores must be hyper-threaded
in order to keep them executing at full efficiency. In all, to drive a
complete exascale machine will require between one and ten billion
concurrently running threads.

Table 1: Comparison of characteristics between petascale and pro-
jected exascale machines.

Jaguar — XTS5  Exascale Increase
Cores 224256 100 million ~ 1,000
— 1 billion
Threads 224,256 way 1 -10 billion way  ~ 50,000
Memory 300 Terabytes 128 Petabytes ~ 500x

Most of our current tools rely on MPI for concurrency. An MPI
process has the overhead of a running program with its own mem-
ory space. A common process has an overhead of about twenty
megabytes. Running on the entirety of Jaguar yields an overhead
of about 4 terabytes, less than two percent of the overall avail-
able memory. In contrast, the overhead for using MPI processes
for all the concurrency on an exascale machine requires up to 200
petabytes, possibly exceeding the total memory on the system in
overhead alone.

Even getting around problems with the overhead of MPI, the
visualization pipeline still has inherent problems at this level of
concurrency. Consider using Jaguar to process a one trillion cell
mesh. If we partition these cells evenly amongst all the cores where
replicated pipelines will process each partition, that yields roughly
5 million cells per pipeline. General rules of thumb indicate this
ratio is optimal for structured grids when running parallel VTK
pipelines [28]. Scaling to an exascale machine, we can project to
processing 500 trillion cells (considering this is the expected growth
in system memory). If we partition these cells evenly amongst all
the necessary cores where replicated pipelines will process each
partition, that yields as few as 50 thousand cells per pipeline. Here
we are starving our pipeline.

Even if we somehow avoid the problem of running on the largest
exascale machines, the problem of a fundamental change in proces-
sor architecture persists. The parallel visualization pipeline simply
does not conform well to multi-core processors and many-core ac-
celerators. In response several researchers are pursing the idea of a
hybrid parallel pipeline [9, 11,20]. The hybrid parallel pipeline
breaks the problem into two hierarchical levels. The first level
partitions the data amongst distributed memory nodes in the same
way as the current parallel pipeline. In the second level we run a
threaded shared memory algorithm to take advantage of a multi- or
many-core processor.

Although the current visualization pipeline does a good job in
providing this first level of distributed memory concurrency, it
provides no facilities whatsoever for this second layer of multi-
threaded concurrency. This places the onus on each visualization
pipeline filter developer. That is, each filter must be independently

and painstakingly designed to exploit concurrency and optimized
for whatever architecture is used. Even if this undertaking were to
be performed, the concurrency is ultimately undermined at the con-
nections of filters where execution threads must be synchronized
and data combined.

Our Dax toolkit is designed to encapsulate the complexity of
multi-threaded visualization and data analysis algorithms. Our ini-
tial implementation targets GPU architectures. We feel that the id-
iosyncrasies of these accelerators, many threads with explicit mem-
ory locality, are representative of all future architectures.

4 SYSTEM OVERVIEW

According to the ExaScale Software Study performed by DARPA
IPTO [42], “it is important to ensure that the intrinsic parallelism in
a program can be expressed at the finest level possible e.g., at the
statement or expression level, and that the compiler and runtime
system can then exploit the subset of parallelism that is useful for
a given target machine.” Taking this advice to heart, we propose
building a visualization framework using the worklet as the basic
computational unit. A worklet is an algorithm broken down to its
finest level. It operates on one datum and, when possible, generates
one datum. A worklet has no state; it operates only on the data it is
given.

Reducing visualization algorithms to this fine of a computational
unit is feasible because of the embarrassingly parallel nature of
most visualization algorithms. We are exploiting the same algo-
rithm properties that make the streaming and data parallelism ap-
proaches feasible [2,3]. In essence, the operations of most visual-
ization algorithms involve data at a single location in the mesh and
its immediate neighborhood. Hence, we can break the data down to
the elemental pieces of the mesh.

In this section we describe different components of the Dax
framework. In our current implementation we use the GPU pro-
cessor as an analog for the exascale node. We use OpenCL [30]
to compile and execute worklets on the GPU, however it must be
noted that all the user-developed worklet code is a subset of Stan-
dard C [5] and is independent of any GPGPU/OpenCL constructs,
thus making it possible to port the worklets to different computing
languages based on Standard C including CUDA [31].

With the analysis algorithms implemented as worklets, the
framework provides mechanisms to connect these worklets to form
visualization pipelines. Since we decided to use GPUs as the analog
to an exascale node available to us today, the framework also man-
ages data movement and scheduling of the worklets for executing
on the GPU. Also, as is the case with any full-fledged visualization
framework, we provide a data model. The data model essentially
helps us define the data-structures used to store data in memory for
the system and semantics associated with them.

Dax toolkit provides two programming environments: one to de-
velop new worklets and one to use the Dax system.

Execution Environment This is the API exposed to developers
that write worklets for different visualization algorithms. This
API provides work for one datum with convenient access to
information such as connectivity and neighborhood needed by
typical visualization algorithms. This is a Standard C API that
makes it possible to compile the worklets for existing GPU
devices using OpenCL.

Control Environment This is an API that is used on a node in an
exascale machine to build the visualization pipeline, transfer
data to and from IO devices, and schedule the parallel execu-
tion on the worklets. It is a C++ API that is designed for users
that want to use the Dax toolkit to analyze and visualize their
data using provided or supplied worklets.
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Figure 2: Layout of the Dax system. Applications using Dax have a
different programming and execution environment than the worklets.
The executive organizes the interaction between these two environ-
ments.

The dual programming environments is partially a convenience
to isolate the application from the execution of the worklets and is
partially a necessity to support GPU languages with host and device
environments. The Dax toolkit provides an object called an Execu-
tive that acts as an interface between the control and execution envi-
ronment. The executive accepts mesh data and execution requests
from the application running in the control environment. Based
on these requests, the executive builds worklet pipelines, manages
memory, and schedules threads in the execution environment. The
relationship between the control and execution environments and
the executive’s role in managing them is demonstrated in Figure 2.

4.1 Data Model

The data model used by the Dax framework is loosely based on the
OpenDX Data Model [21], which itself is based on the data model
proposed by Haber et al. [18]. This data model makes it possible to
describe data attributes defined on different kinds of grids including
uniform rectilinear grids, curvilinear grids, and unstructured grids
made up of triangles, quads, tetrahedra, etc. Similar to OpenDX,
the bulk of the data is encapsulated in array objects called daxAr-
ray. Also, there are different types of arrays such as regular array,
constant array, and irregular array that make it possible to com-
pactly represent values in the array. A dataset comprises a named
collection of arrays with relationships between the arrays. There
are two possible relationships between arrays:

dep relationship records a dependency. Array A depends on array
B implies that A has exactly as many items as B and every
item in A corresponds to an item in B.

ref relationship records a reference or indirection. Array A
references array B implies that values in A are references to
values in B e.g. an array describing the cell connections be-
tween points references the “positions” array that defines the
point coordinates.

Figure 3 shows a representation for a dataset with cell and point
attributes.

Dataset ’—ﬂ Array <
positions —

I—) Array
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cell_scalar —
point_scalar _—|—> Array
dep ‘ ]
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Figure 3: Example of a dataset with a point and cell scalars.

4.2 Execution Model

The execution model is based on the data-flow paradigm. In a data-
flow implementation, all nodes in the data-flow pipeline are pure
stateless functions through which the data flows. The Dax execu-
tion model is similar. It comprises Modules (daxModule) that are
connected together to form pipelines. The crux of the module (i.e.
the algorithm or the processing logic) is the worklet. A worklet
is C-function that takes processes input array(s) to generate out-
put array(s). The module can be thought of as the wrapper around
the worklet that facilitates hooking up of these worklets to form
pipelines as well as provide support for type-checking and kernel
generation. The Executive is an object that builds the data-flow
pipeline and schedules its execution on the device. The complexity
in the Executive stems from ensuring that the worklets are executed
in correct orders on the device.

For our implementation, we are focusing on OpenCL. Thus the
worklet is written as an OpenCL function using dAPI (Device API)
for accessing data (described later). The executive, accessed via
OpenCL’s host API, generates an OpenCL kernel to schedules the
kernel for execution to produce the requested result.

4.3 Execution Environment

The worklet code uses this API to access the data, compute values,
and then produce the result. A worklet is a simply a C-function that
takes in input array(s) and produces an output array. The execution
environment adds annotations to the arguments making it possible
to deduce relationships between the arguments. For example, the
following code shows the prototype for a worklet that takes in a
position coordinate and point scalar to produce a new point scalar.

__worklet__ void PointWorklet (daxWork work,

const daxArray* __positions__ in_positions,
const daxArray+ __dep_ (__positions__) in_point_scalars,
daxArrayx __dep__ (__positions__) out_scalars)

{
daxFloat3 point_cordinate =
daxGetArrayValue3 (work, in_positions);
daxFloat in_value =
daxGetArrayValue (work, in_point_scalar);
daxFloat out_value = ...;
daxSetArrayValue (work, out_scalars, out_value);

}

Figure 4: Pseudo-code for a worklet operating on input point scalars
and point coordinates to generate point scalars.

As is clear from the above code snippet, the worklet code never
directly access any memory locations. It uses the API to get and set
values from opaque types. Also, the datum the operations are being
performed on are identified by an opaque handle called daxWork.
daxWork makes it possible for the framework to optimize reads and
writes to and from global memory.



The following worklet code computes cell-gradients. It demon-
strates iterating over all the points in a cell and computing a derived
quantity, which is typical of many visualization algorithms.

__worklet__ void CellGradient (const daxWork work,

const daxArray* __positions__ in_positions,
const daxArrayx
__and__ (__connections__, __ref_ (in_positions))
in_connections,
const daxArray* __dep__ (in_positions) inputArray,
daxArrayx __dep__ (in_connections) outputArray)

daxConnectedComponent cell;
daxGetConnectedComponent (work, in_connections, &cell);

daxFloat scalars[MAX_CELL_POINTS];

uint num_elements = daxGetNumberOfElements (&cell);
daxWork point_work;

for (uint cc=0; cc < num_elements; cc++)

{
point_work = daxGetWorkForElement (&cell, cc);
scalars[cc] = daxGetArrayValue (point_work, inputArray);

}

daxFloat3 parametric_cell_center =
(daxFloat3) (0.5, 0.5, 0.5);
daxFloat3 gradient = daxGetCellDerivative (&cell,
0, parametric_cell_center, scalars);
daxSetArrayValue3 (work, outputArray, gradient);

Figure 5: Worklet for computing cell gradients in Dax Execution envi-
ronment.

Since the worklet code never directly accesses memory, the
framework is free to optimize the fetches and write-backs to global
memory under the covers, avoiding global memory writes all to-
gether for intermediate results in the pipeline. Furthermore, the
design isolates the worklet developers from changes to the under-
lying platform. For example, by simply providing CUDA based
implementations for all execution environment and updating the ex-
ecutive to use CUDA runtime components, we can port the entire
framework to a CUDA platform instead of OpenCL.

The annotations used in the arguments to the worklets serve two
purposes. First, it enables the worklet developer to make certain as-
sumptions about the arrays. For example, if an argument is marked
as __positions__, the array represents point coordinates with exactly
3 components. Second, it enables the control environment (as ex-
plained the section 4.4) to validate the pipeline, catching any invalid
connections before the job is dispatched to the parallel platform.

4.4 Control Environment

The control environment can be considered as the scaffolding inter-
face that helps set up the visualization pipeline. Each worklet gets
wrapped into a module (daxModule), with each array argument to
the worklet becoming an input or an output port for the module.
A pipeline is constructed by connecting the output ports to input
ports on different modules. To execute the pipeline, one calls Ex-
ecutive::Execute(). That results in first validating the pipeline to
ensure that input port requirements are met. Second, an OpenCL
kernel is generated that executes the entire pipeline on a datum. Fi-
nally, the data arrays are uploaded to the device memory and the
OpenCL kernel is triggered.

The execution of the worklets in the pipeline is demand driven.
That is, it is triggered by calling the last worklet in the pipeline.
The framework maintains the information of how each intermedi-
ate array is to be generated. When a worklet makes a daxGetArray-
Valuex function call, it checks if the value has been computed or

available in global memory. If not, it executes the source-worklet
to produce the value implicitly. Likewise, daxSetArray Valuex func-
tion calls don’t necessarily result in a global memory write. If the
array being written to an intermediate result i.e. result being passed
from one worklet to another, then the value gets written in local
memory and returned by the daxGetArray Valuex call that triggered
the execution of the worklet. All this is happening under the covers
without the worklet having to worry about any of these optimiza-
tions.

Our current implementations don’t store any intermediate val-
ues. Consequently if a worklet access the same input array location
twice, then the producer worklet that generates that value is also
executed twice. However, based on the platform, we can easily sup-
port sharing of intermediate results between worklet groups (called
workgroups in OpenCL).

5 RESULTS

Table 2 compares the execution times for a simple pipeline Eleva-
tion — Cell Gradient applied to 256x256x256 block of 3D uniform
rectilinear grid using NVIDIA GeForce 8800 GTX graphics card
against a serial VTK-based implementation of the same pipeline on
a Intel Xeon 3.00 GHz CPU.

Table 2: Performance comparison between Dax toolkit and VTK

Computation VTK Dax  Speedup
Elevation — Gradient, 256° 15.61s  0.72s 21.7

We see that even with a simple pipeline involving just two
worklets, we can get a decent speed up.

The code that developer writes in the worklet is comparable to
the code one would write to do the something similar in existing vi-
sualization frameworks such as VTK. Figure 6 shows a code snippet
for computing cell gradients in VTK’s vtkCellDerivatives filter.

int vtkCellDerivatives::RequestData(...)
{
.[allocate output arrays]...
.[validate inputs]...
for (cellId=0; cellld < numCells; cellId++)
{

input->GetCell (cellId, cell);

subId = cell->GetParametricCenter (pcoords);
inScalars->GetTuples (cell->PointIds, cellScalars);
scalars = cellScalars->GetPointer (0);
cell->Derivatives (subId, pcoords, scalars, 1, derivs);
outGradients->SetTuple (cellId, derivs);

}

. [cleanup]...

Figure 6: Code to compute cell gradients in VTK (vtkCellDerivatives).
Compare this with code for the same in Dax Toolkit (Figure 5).

6 CHALLENGES AHEAD

In this paper we outlined our proposed framework and demon-
strated the feasibility using worklets that compute point scalars or
generate derived cell quantities using cell geometry and topology.
These cover a wide range of visualization and analysis algorithms
however there still remain a set of algorithms such as clipping cells,
iso-surfacing that remain to be addressed. In general, algorithms
that change the topology or connectivity have not been discussed.
The unique characteristic of such algorithms is that they cannot de-
termine the number of elements a priori. Unlike traditional filters,



a worklet has no explicit memory management or control capabil-
ities. Using the information provided by the annotations, the exec-
utive deduces the memory requirements and allocates appropriate
buffers. Since that’s no longer possible for topology changing al-
gorithms, it becomes essential that such worklets are split into at
least two components: one computing the number of elements be-
ing generated and the second doing the actual work to generate the
new elements. The executive will then have to execute the two com-
ponents in separate passes. This multipass approach is employed by
existing implementations of marching cubes algorithm on the GPU
using CUDA [32].

Another challenge is interworklet communication. Certain visu-
alization algorithms are not amenable to being parallelized without
extensive communication e.g. streamline generation. Although the-
oretically it is possible for worklets to communicate with each other
using explicit synchronization mechanisms it can affect the perfor-
mance drastically. As framework designers, we either have to bite
the bullet and support such algorithms or provide alternatives. For
example, although streamline tracing is not easily parallelizable,
line integral convolution [25] can be suggested as parallel alterna-
tive for analyzing vector fields.
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