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Motivation

There is an increasing emphasis on error 
estimation and uncertainty quantification in 
computational physics

• Need sufficient computation to meet specific 
accuracy requirements

• Ensembles of calculations stress available 
computing resources

Need good error estimates to obtain 
sufficient, but not excessive, accuracy of 
results.
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Types of computational errors

Computational results from a verified code will 
contain several types of errors

• iterative

• discretization

• model (missing physics)

This work addresses iterative errors: when has 
an iterative method performed a “sufficient” 
number of iterations?
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Derivation of error estimates
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Make the following definitions:

Error                Residual

   ll xxe       lll xxr   11

   ll eRLe 11        11   lll eer



After sufficient iterations the error is related to the 
dominant eigenmode: 
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Asymptotic assumption
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The largest eigenvalue (spectral radius) and error may 
be computed as: 

 
   

   

 

 l

l

ll

ll

l

r

r

ee

ee 1

1

1

1
maxmax







 



     

 

 l

l
ll re

max

max

1 






   ll re Warning (false convergence): 



Typically we need relative values rather than absolute 
values: 
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Relative error

 
   

 l

ll

l
rel

x

r

x

r
r 

   
 

 l
rel

l
rell

rel
l

r

r 1

1
max,

1
max



      
 

 l
rel

l
rell

rel
l

rel re
max,

max,

1 






 
   

 l

ll

l
rel

x

e

x

e
e 



The previous error estimates need a definition for 
We have defined numerous ones for transport with 
the following taxonomy:

• Form

• Order

• Signed/Absolute

• Discrete/Continuous

• Region of Integration
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Error norms for transport
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Error norms: form and order
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Error norms: signed vs. absolute values

For a “signed” norm we use     instead of   (seminorm)

The signed norm is more directly related to integral 
quantities such as dose.
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Error norms: discrete vs. continuous

A computer code will of course only have a discrete set of solution 
values.  But those discrete values may be sufficient to define the 
solution everywhere, e.g. in a finite element expansion.  The integrals 
in the norms may be obtained through quadrature rules.

For a “discrete” norm we replace the integral over space and direction 
with a vector sum of the discretized variables.
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• Continuous form more directly related to output quantities

• Continuous form performs volume/Jacobian weighting

• Continuous form more expensive
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Error norms: region of integration

We may restrict the limits of integration in order to 
concentrate on important parts of the problem:

“global”: entire spatial domain

“region”: restricted to subdomain

“leakage”: integration over a surface
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Two test problems

“Central source” and “boundary source” geometry

“Reactor” geometry
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Global L-norm error estimates, 
“central source”
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L-norm error estimates in left 
region, “central source”
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L1-signed error estimates, 
“central source”
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L1-signed error estimates, 
“boundary source”
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L1-signed error estimates, “reactor”
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L1-signed error estimates, 
“distorted central source”
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Summary and Conclusions

• Iterative errors are not directly known, so they must be 
estimated

• Our estimates are derived from the iterative residuals

• Numerous options available for defining the norms used 
in the estimates

• Norms that are most closely related to the desired 
quantity of interest are the most accurate

• The region of integration affected the error estimates the 
most in our tests

• Our results are for source iteration – need to examine 
problems with preconditioning


