i SAND2011- 2978C
e

| Specialized Error Estimates for the
Control of Transport Solver lterations

Shawn D. Pautz
Sandia National Laboratories
Albuquerque, NM, U.S.

M&C 2011
Rio de Janeiro, Brazil
May 12, 2011




"
P Outline

* Motivation

» General form of error estimates
* Types of error norms

* Results

« Summary and Conclusions

2 Sandia
r.h National
Laboratories




M Motivation

There is an increasing emphasis on error
estimation and uncertainty quantification in
computational physics

* Need sufficient computation to meet specific
accuracy requirements

* Ensembles of calculations stress available
computing resources

Need good error estimates to obtain
sufficient, but not excessive, accuracy of
results.
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M o Types of computational errors

Computational results from a verified code will
contain several types of errors

e iterative
 discretization
* model (missing physics)

This work addresses iterative errors: when has
an iterative method performed a “sufficient”
number of iterations?




Derivation of error estimates

Let Ax=b, where A=L—-R
ﬁ x(l+1) — L—le(Z) _I_L—lb

Make the following definitions:
Error Residual

(1+1) _ _(1+1)

r =X —X(Z)
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M Asymptotic assumption

After sufficient iterations the error is related to the
dominant eigenmode:
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¢

The largest eigenvalue (spectral radius) and error may
be computed as:
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Warning (false convergence): e") = ¥
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M o Relative error

Typically we need relative values rather than absolute

values:
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M Error norms for transport

The previous error estimates need a definition for H H
We have defined numerous ones for transport with
the following taxonomy:

 Form

* Order

« Signed/Absolute

* Discrete/Continuous
* Region of Integration
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Error norms: form and order

Ly (r.Q)=[[av [y (r0)]"

n /n .
] (seminorm)

1, (. Q)=[av [dofv v (.0)

/n

5, (@)= [ar [aa-vy () ]"  (seminorm)




=~ Error norms: signed vs. absolute values

For a “signed” norm we use V instead of HWH (seminorm)

— L, w(n)=[[ar [ay ()]

The signed norm is more directly related to integral
guantities such as dose.
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Error norms: discrete vs. continuous

A computer code will of course only have a discrete set of solution
values. But those discrete values may be sufficient to define the
solution everywhere, e.g. in a finite element expansion. The integrals
in the norms may be obtained through quadrature rules.

For a “discrete” norm we replace the integral over space and direction
with a vector sum of the discretized variables.

= L )= STV |

» Continuous form more directly related to output quantities
 Continuous form performs volume/Jacobian weighting
» Continuous form more expensive
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Error norms: region of integration

We may restrict the limits of integration in order to
concentrate on important parts of the problem:

“global”: entire spatial domain
“region”: restricted to subdomain
‘leakage”: integration over a surface
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Two test problems

e =1 e c=0 e =1 >
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“Central source” and “boundary source” geometry

sIm|m|m|s
sim|f]lm]s
sIm|m|m|s

“Reactor” geometry
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-3 ¢ L-norm error estimates in left
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L1-signed error estimates,
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L1-signed error estimates,
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L1-signed error estimates,
“distorted central source”
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Summary and Conclusions

Iterative errors are not directly known, so they must be
estimated

Our estimates are derived from the iterative residuals

Numerous options available for defining the norms used
In the estimates

Norms that are most closely related to the desired
quantity of interest are the most accurate

The region of integration affected the error estimates the
most in our tests

Our results are for source iteration — need to examine
problems with preconditioning
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