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Motivation

* Provide a unified computational framework
for finite element (FE) and an molecular
dynamics (MD) for problems in which
atomistic description of material is needed
only for a localized region and the dynamical
interactions between the FE and MD are
important for understanding the system

— MD cost to simulate entire system atomistically
would be prohibitive

— Dual Statement: FE constitutive models are
not of sufficient fidelity for all of the system

« Apply boundary conditions and sources to
MD to enable engineering simulation of
nanosystems analogous to FE analysis

« Enhance MD with multiphysics capabilities
mediated by a FE model

— Electron transport effects augmenting classical
MD

— Electric field modeling for long-range
interactions

* Learn something!
— On-the-fly Hardy post-processing
— Think before you simulate
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‘ Two-Way Coupling for Heat Transfer

Goal: Coupling strategy that allows both
fine-to-coarse scale heat transfer and
coarse-to-fine scale heat transfer

Fine-to-coarse: Fine scale vibrational energy from the MD region should
flow into the surrounding FE region and be accounted for as temperature

Coarse-to-fine: Temperature of the FE model (68) should have an
effect on the MD region, through e.g. thermal excitation of atoms

Two interdependent parts of coupling strategy:

1.Modification of finite element equation to incorporate effects of atoms on 6
2.Thermostat to enforce temperature field 6 at atoms
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% Continuum Heat Equation

» Heat equation with Fourier heat conduction arising from
Boltzmann Transport equation for energy conservation:

« Finite element discretization leads to a set of ODE’ s for the
nodal temperatures
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MD Temperature Definition

« We have to relate the dynamics of atoms to the nodal temperature field
Using Equipartition of Energy:

 Define restriction operation: MD field - Nodal field
— E.g. projection, averaging, shape functions...
— One way: minimize difference between MD and continuum temperature fields
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Using row-sum
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‘Derivation of Coupled FEM-MD Equations

* Apply Galerkin method to entire domain:

— Decompose domain:

/ N; (%) peyd (x) dV = N; (%) pc,0" (x) dV + Z Niapc,OP AV,
Q (0%

Qfem

— Use atomic temperature:

Ni (%) pcy0” (%) dV+Z Nrapc,d" AV, = Ni (%) pc,0" (%) dV—i—Z Nriqea AV,

Qfem Qfern
— Apply physics:
N; (%) peyt™ (x) dV + )~ NiapebpAV, = NV -k5V0"dV +2  Nigve - fo
Qfern 8% Qfem (0]
— Discretize:
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% Coupling MD Thermostat

« Effects of FEM on MD can be included by prescribing
constraints relating the FE and MD dynamics:

— Temperature constraint
MD j
2) Niava-fo—» M{7P6,=0
o J

— Heat flux constraint

0P
ZNIQ <a—'va+va'fa>+ Nlanmd'qhdA:O
o Xa I'nvp

— Application of Gauss’ principle of least constraint to atomic forces:

— Variable A is a continuum field defined on the nodes:

A(xa) =Y Nias
I

Sandia
National
Laboratories



% Combined System

» Result is set of coupled FEM/MD equations

Z Mrs0;5 = Z K05+ 2 ZNlaVa '

. MD Coupling parameter
MaVa = i, Z Nia )‘I Va (temperature/flux constraint) I

« Combined MD/FEM system has two-way coupling:

<1 atoms contibue to noda het squaton
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for Time Integration

V; ' Fractional Step Method

« Gear time integration for FE dynamics: K760
, : : . - __ eMD
- Verlet time integration for MD dynamics: M Ve = {

» Consistent update for FE-MD terms:
A (N]E]) = Z N[a (QAtVa . fa + At2m;1fa . fa)
o

» Exact constraint enforcement applied after other time updates
using the fractional step method

AtY Nika Y NGy — — Z N&kq (Z N;AJ> (Z N;‘;AK> = RHS
o J J K

« Can eliminate energy loss/gain in coupling
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}‘ Coupled System

* 1D bar with embedded MD region (~7000 atoms)
 FEM nodes fixed hot/cold at left/right ends
* Temperature coupling method

Atom KE
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}‘ Coupled System

* 1D bar with embedded MD region (~7000 atoms)
 FEM nodes fixed hot/cold at left/right ends
* Flux coupling method
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2D Diffusion Problem

 Plate with embedded MD region (~33,000 atoms)
* |nitialized to temperature field with gaussian profile
» Adiabatic boundary conditions at edges

—9U x (Angstromsj” 180

FE Temperature Atom KE

2.500e+01 2.450e-02
2.375¢+01 i 1.837e-02 !

1.225e-02
6.125e-03
0.000e+00

2.250e+01
2.125e+01
2.000e+01
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‘ Effects of Imperfections on Conductivity

» Center layers of atoms given
10x mass of surroundings

— Acoustic mismatch leads to
inherent resistance in center

layer

» Results are fairly insensitive to
size of MD region
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Control variable A (ps'1)

“hermal Conductivity Calculations

using AtC Boundary Conditions
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Hardy Analysis

Tensile stretching of
plate with circular hole

Compressive stress field for an
atomic simulation of shock loading
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}‘ Extrinsic Physics Modeling

* MD explicitly represents atomic motions with great accuracy
— Balistic phonon propagation
— Defects
— Nanostructures
* MD does not capture many other important physics
— Electric fields
— Energy carriers
— Electrons
* Represent additional physics in a continuum model

» Use coupling techniques developed in thermal work to interface
the two disparate types of physics descriptions

« Examples underway: electron temperature, consistent electric
fields, energy carrier density, full “fluidic” description of
unrepresented particles
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‘ Coupled Two-Temperature Approach

= FE: Tojectron Explicit representation of
phonons by MD,
[ r=G(T.- Tp) Electron effects solved for on

© overlaid mesh
MD: T
phonon
- Q -
electro €
Energy exchange handled . T ) ‘ R T )
though thermostats as in ‘ ‘ ' , Gep | ) - .
the thermal-only problem vorvr — L -
Qf‘e;rpd o ® @ qte;md ep
o
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TEMPERATURE

‘ Laser heating of a metallic CNT

* eMD can be used to model heating and thermal-induced
vibration in nanostructures that possess a metallic character of
thermal conduction, e.g. (8,8) armchair CNT.
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‘ Ge/Si superlattice nanowires

» Our method captures the retarded phonon transmission observed
for Ge/Si superlattice nanowires with application to thermoelectrics
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P~ ' Metallic and Semi-Conductor
- Powered Nanodevices

* Drift-diffusion models can be used to study powered nanowires and

the interaction between current and heating
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Elasticity

V; ' Other Physical Models:

« Many types of physics problems can use the same
mathematical and algorithmic structure

« Elasticity dynamics of a bar at the nano-scale:

u_x(A)
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‘ AtC Model for Long-range
Electrostatics

FE Mesh Enables
1. Coarse-scaling
MD for
increased
physical
understanding
2. Solves for
electric field
with
a) Upscale FE
source
terms
b) Downscale
MD electric
forces
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Other Physical Models:
Fluidic Species Transport

 Define coupling in Eulerian frame rather than Lagrangian

 Track individual species to understand particle agglomeration
and diffusion

« Example problem: transport of saltwater into nanotubes

* Future work: energy storage devices @ Notooa
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Electrostatics

Potential drop across short axis

V; ' Other Physical Models:

Net charge causes net tip

Mutual repulsion opens tip displacement

electric_potential
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Simulations performed with LAMMPS MD code:
http://lammps.sandia.gov
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