
Atomistic-to-Continuum Modeling for Multi-
scale and Multi-physics Computations 

 
Jeremy Templeton, Reese Jones, Greg Wagner, Jonathan Zimmerman 

 
 

Bay Area Scientific Computing Day 2011 
Stanford University 

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy’s National Nuclear Security Administration  

 under contract DE-AC04-94AL85000."

SAND2011-2990C



Motivation 

•  Provide a unified computational framework 
for finite element (FE) and an molecular 
dynamics (MD) for problems in which 
atomistic description of material is needed 
only for a localized region and the dynamical 
interactions between the FE and MD are 
important for understanding the system 

–  MD cost to simulate entire system atomistically 
would be prohibitive 

–  Dual Statement:  FE constitutive models are 
not of sufficient fidelity for all of the system 

•  Apply boundary conditions and sources to 
MD to enable engineering simulation of 
nanosystems analogous to FE analysis 

•  Enhance MD with multiphysics capabilities 
mediated by a FE model 

–  Electron transport effects augmenting classical 
MD 

–  Electric field modeling for long-range 
interactions 

•  Learn something! 
–  On-the-fly Hardy post-processing 
–  Think before you simulate 



Two-Way Coupling for Heat Transfer 
Goal: Coupling strategy that allows both  

fine-to-coarse scale heat transfer and  
coarse-to-fine scale heat transfer 

q 
Fine-to-coarse:  Fine scale vibrational energy from the MD region should 
flow into the surrounding FE region and be accounted for as temperature 

q 
Coarse-to-fine:  Temperature of the FE model (θ) should have an 
effect on the MD region, through e.g. thermal excitation of atoms 

Two interdependent parts of coupling strategy: 

1. Modification of finite element equation to incorporate effects of atoms on θ	


2. Thermostat to enforce temperature field θ at atoms 



Continuum Heat Equation 

• Heat equation with Fourier heat conduction arising from 
Boltzmann Transport equation for energy conservation: 
 
 
 

•  Finite element discretization leads to a set of ODE’s for the 
nodal temperatures 
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MD Temperature Definition 

•  We have to relate the dynamics of atoms to the nodal temperature field 
 
 
 
 
 

•  Define restriction operation: MD field à Nodal field 
–  E.g. projection, averaging, shape functions… 
–  One way: minimize difference between MD and continuum temperature fields 

 

Using row-sum 
lumping 

(localization) and 
atomic quadrature 
for mass matrix in 

MD region 
(thermodynamic 

consistency) 

Using Equipartition of Energy: 
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Dulong-Petit expression for heat capacity 
of a mono-atomic solid or dense fluid 

above the Debye temperature 



Derivation of Coupled FEM-MD Equations 

•  Apply Galerkin method to entire domain: 
 
 
 

–  Decompose domain: 
 
 
 

–  Use atomic temperature: 
 
 
 

–  Apply physics: 
 
 
 

–  Discretize: 
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Coupling MD Thermostat 

• Effects of FEM on MD can be included by prescribing 
constraints relating the FE and MD dynamics: 
 
–  Temperature constraint 

–  Heat flux constraint 
 

–  Application of Gauss’ principle of least constraint to atomic forces: 

–  Variable λ is a continuum field defined on the nodes: 
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Combined System 

• Result is set of coupled FEM/MD equations 
 
 
 
 

• Combined MD/FEM system has two-way coupling: 

Coupling parameter  
(temperature/flux constraint) 

Atoms contribute to nodal heat equation 

Heat at nodes affects MD energy through thermostat  
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Fractional Step Method  
for Time Integration 

• Gear time integration for FE dynamics: 

• Verlet time integration for MD dynamics: 

• Consistent update for FE-MD terms: 
 

• Exact constraint enforcement applied after other time updates 
using the fractional step method 

• Can eliminate energy loss/gain in coupling 
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Coupled System 
•  1D bar with embedded MD region (~7000 atoms) 
•  FEM nodes fixed hot/cold at left/right ends 
•  Temperature coupling method 



Coupled System 
•  1D bar with embedded MD region (~7000 atoms) 
•  FEM nodes fixed hot/cold at left/right ends 
•  Flux coupling method 



2D Diffusion Problem 

•  Plate with embedded MD region (~33,000 atoms) 
•  Initialized to temperature field with gaussian profile 
•  Adiabatic boundary conditions at edges 



Effects of Imperfections on Conductivity 

• Center layers of atoms given 
10x mass of surroundings 
–  Acoustic mismatch leads to 

inherent resistance in center 
layer 

• Results are fairly insensitive to 
size of MD region  

mα = 10M 

a 

mα = M 



Thermal Conductivity Calculations 
using AtC Boundary Conditions 
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Hardy Analysis 

u1 

P11 P22 

Tensile stretching of 
plate with circular hole 

u1 
Compressive stress field for an 

atomic simulation of shock loading 
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Extrinsic Physics Modeling 

• MD explicitly represents atomic motions with great accuracy 
–  Balistic phonon propagation 
–  Defects 
–  Nanostructures 

• MD does not capture many other important physics 
–  Electric fields 
–  Energy carriers 
–  Electrons 

• Represent additional physics in a continuum model 
• Use coupling techniques developed in thermal work to interface 

the two disparate types of physics descriptions 
• Examples underway:  electron temperature, consistent electric 

fields, energy carrier density, full “fluidic” description of 
unrepresented particles 



Coupled Two-Temperature Approach 

 

Explicit representation of 
phonons by MD, 

Electron effects solved for on 
overlaid mesh 

Energy exchange handled  
though thermostats as in  
the thermal-only problem 



Laser heating of a metallic CNT 

•  eMD can be used to model heating and thermal-induced 
vibration in nanostructures that possess a metallic character of 
thermal conduction, e.g. (8,8) armchair CNT. 
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Ge/Si superlattice nanowires 

• Our method captures the retarded phonon transmission observed 
for Ge/Si superlattice nanowires with application to thermoelectrics 



Metallic and Semi-Conductor 
Powered Nanodevices 
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• Drift-diffusion models can be used to study powered nanowires and 
the interaction between current and heating 

Electron pulse 
gives rise to 
uniform and 
local heating 

Quantum 
effects in 

nanowires give 
rise to spatially 

varying 
electron 

density and 
local heating 



Other Physical Models: 
Elasticity 

• Many types of physics problems can use the same 
mathematical and algorithmic structure 

• Elasticity dynamics of a bar at the nano-scale: 



AtC Model for Long-range 
Electrostatics 

Gold 
Electrode 

CNT  
Channels 

Water 

Ions 
FE Mesh Enables 
1.  Coarse-scaling 

MD for 
increased 
physical 
understanding 

2.  Solves for 
electric field 
with 
a)  Upscale FE 

source 
terms 

b)   Downscale 
MD electric 
forces 



Other Physical Models:  
Fluidic Species Transport 

• Define coupling in Eulerian frame rather than Lagrangian 
•  Track individual species to understand particle agglomeration 

and diffusion 
• Example problem:  transport of saltwater into nanotubes 

•  Future work:  energy storage devices 



Other Physical Models: 
Electrostatics 

Atoms anchored to fixe the CNT 

Potential drop across short axis 

Electrons segregate to tip 

Mutual repulsion opens tip Net charge causes net tip 
displacement  
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