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Photofragmentation Detection:
Sensitivity and Specificity
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« Spectral features unsuitable for direct optical probing.
 However, photofragmentation can produce PO.
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Photofragmentation Detection of
- Vapor-Phase Organophosphonates
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Long et al. (1986) and Shu et al. (2000) demonstrated PF-LIF for

vapor-phase organophosphonates.
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Detection of Surface-Bound
Organophosphonates
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* Two substrates
thoroughly
investigated

— Aluminum (highly
conductive, low
porosity)

— Concrete (non-
conductive, high
porosity)

* Rotate sample and
acquire single-pulse-
pair spectra

* Unmix the spectra into
target and background

Sandia
National
Laboratories



emporal/Spectral/Spatial Studies
of PO Formation
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emporal/Spectral/Spatial Studies
of PO Formation
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emporal/Spectral/Spatial Studies
of PO Formation
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emporal/Spectral/Spatial Studies
of PO Formation
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( Determine Detection Limits by
nmixing Target and Background Signals

* DIPP was deposited with apertured airbrush
* Average deposition measured gravimetrically (~1 mg lower

limit)
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y z " ~ Analysis of Single-Pulse-Pair Spectra

* 600 single-pulse-pairs were e
acquired for each run of

« Sandia’s runAxsia software
performs Multivariate Curve
Resolution (MCR)

* # pure components = 2
— 1 signal, 1 background
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- Alternating least squares to minimize E: C = DS, ST=C*D
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' Multivariate Curve Resolution
Pure Component Spectra

Mean spectra
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A background component co-varies with the PO fluorescence on

aluminum, but not on concrete.
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Multivariate Curve Resolution
Relative Concentrations
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Concrete substrate

The DIPP signal is spatially continuous on aluminum, but not on

concrete.
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Calculating the Single-Pulse-Pair
Detection Limit

;"

» Converted to photoelectrons: detection limit at SNR = 20

30 pg/cm? on aluminum 210 pg/cm? on concrete
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Conclusions

* For surface-bound organophosphonates, detected PO
likely results from P recombining with O

— Implications for specificity

« 30 yg/cm? detection at 21000 pts/s
* Example: 21 meters/s at full
linear coverage (every mm)

PO LIF

Location .

 Single-pulse-pair detection limit depends on substrate
— Implications for quantitatively assessing detection methods

- Evaluating single-pulse-pair data provides some
knowledge of backgrounds

— Differences noted between aluminum and concrete
backgrounds (not apparent from averaged data)
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