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PURPOSE DS
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To understand nickel diffusion in gold and impacts on low
temperature aging.

To verify and cross-reference surface analysis quantification.

To develop quantitative HAXPES with application to the
gold/nickel system.

HAXPES performed at NSLS (only HAXPES end-station in USA)
NSLS is a DOE user facility at Brookhaven Ntl. Labs
Operational since 1982
Provides high-brightness radiation from
far-infrared to 100 keV X-rays.

49 beamlines on the X-ray ring
16 beamlines on the VUV-IR ring.
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NSLS Il (scheduled for 2015)

“NSLS-I1 will be a new state-
of-the-art, medium-energy
electron storage ring (3
billion electron-volts)
designed to deliver world-
leading intensity and
brightness, and will produce
x-rays more than 10,000
times brighter than the
current NSLS.”

www.bnl.gov/ps/nsls2/about




HARD X-RAY PHOTOELECTRON SPECTROSCOP Y] i
HAXPES

In [aboratory XPS instruments, the energy of
the excitation source is fixed (commonly 1487
or 1254 eV).

At beamline X24A, the energy of the light

source can be tuned across a broad range

(2000-5000 eV) with higher brightness and
better resolution.

Advantages of HAXPES

Study samples from air; i.e., real samples!
Tune information depth for experimental system.

Variable kinetic energy XPS (VKE-XPS) for depth
profiling and chemical speciation.

Bulk and surface sensitive core lines accessible for
the same element.

Eliminate Auger interferences.
Photoemission and other techniques (SSXPS).




SURFACE ANALYSIS o
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Analytical technigues with sensitivity to the uppermost nanometers
of a material providing vertically resolved chemical analysis.

laboratory - XPS, AES, SIMS, ...
synchrotron - NEXAFS, VKE-XPS, ...

- TEM/
AFM OP  SIMS Auger XPS | TXRF SEM GDMS Raman RBS ICPMS LEXES XRR FTIR EDS SIMS STEM

XRD XRF
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Evans Analytical Group, www.eaglabs.com/




HARD GOLD FOR ELECTRICAL CONTACTS () en

Laboratones

What is Hard Gold? (defined in ASTM B488-11 / MIL-DTL-4520D)

hard gold films are defined
by the following three
numbers (specifications):

hard Au

250 nm - 5.0um Es, ~ 80 GPa

pure Au strike\

fe{fe——

1. type (purity) 250 nm * | Exi~ 200 GPa
2. code or grade (hardness) Ecy ~ 115 GPa
3. class (minimum thickness) * if operating at high temperature and on a

Cu substrate then > 1.2 um is recommended

purity type suggested applications (ASTM)

>99.7% Au I general-purpose, high-reliability electrical contacts
(hardest) > 99.0% Au || general-purpose, wear resistance; low temperature only
soldering; limits impact of oxidation of codeposited material

I
(softest) > 99.9% Au ) ,
lIIA  semiconductor components, nuclear eng., high temperature

reduced wear and
—> jncreased electrical
contact resistance

more Ni/Co/Fe content increased
(in the 0 to 2 vol. %) hardness



TYPES OF DIFFUSION o
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sputtered Au on Ni

L.G. Harrison defined three behavior regimes for
experimental diffusivity measurement.

where,
d = grain size (m)
t = aging time(s)
& = grain boundary width = 0.5nm

? é‘- . é D, = lattice dfﬁ"usivity(cmz/ s)

[ . / D i t isapprox. the diffusant penetration depth into the lattice ]

type A (lattice dominated) diffusion type B (mixed lattice/G.B.) diffusion  type C (grain boundary dominated) diffusion
S d o)
5'( DLf<5 ﬂDLf 55

decreasing temperature or aging time
Reference: L.G. Harrison, Trans. Faraday Soc,, 57 (1961) 1191.




DIFFUSION IN GOLD o
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Temperature Activated Process
Diffusivity coefficient (D) is an empirical parameter temperature (°C)
shown to follow Arrhenius behavior. " 7?0 6?0 5?0 4?0 390 2(|}0 150 1?0
‘] 0‘ L 1 1 8 1 1 1
. Eﬂ'
Dgg =D, gz exp| — RT 104

10"+

-13
Diffusion Regimes 107

Metal interdiffusion occurs by four mechanisms, each 104
described by a unique diffusion coefficient:

107
D, inter-granular lattice diffusion

Deg grain boundary diffusion
Dp pipe diffusion through dislocation cores —

1 0—!6_

- l.':\--
TN
1077 lattice diffusivities were
extrapolated from T > 700°C
experiments

Ds surface diffusion 107
@

where: Dy << Dgg~Dp<< Dsg Qo 107
1074
107"

Low Temperature Defect Dominated Diffusion .
The volumetric density of defects (dislocations and grain 1075
boundaries) plays the dominant role in low temperature 1024

Pinnel & Bennet 197':!E (Cu, lattice)
>4 | Hall & Morabito 1976|(Cu, defect)
107" Duhi et al. 1963 (Fe, Co, and Au, lattice) \
- Revnolds et al. 1957 (Ni, lattice) \
107 1 Holloway et al, 1976 (Cr, defect) | :
Tompkins & Pinnel 1975 (Co, defect) i
26
1‘0 | T T T T | T T T T | T T T T | T
1.0 1.5 1 2.0 2.5
10°-— (K7")
T

diffusion degradation




AGING AND CONTACT RESISTANCE o
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AUGER ELECTRON SPECTROSCOPY o
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Z - 5
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< . z_F . , o
Au Ni Ti Si Auger depth profiles of aged thin film stacks show:

100 4"«" 00 \/ ,'ﬁ {'ﬂ"t'l" ‘,6?4.

% | 1) Nickel concentration increases at the

80 surface.

70 i . . .
g — O, 2) The Au/Ni interface is unaffected until
£% e longer aging times where it shows some
g 50 broadening.

.“g 40 -
£ Ni 3) The Ni/Ti and Ti/Si interfaces become

30 I .

mixed.

20
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0 (\ LY WA XA Dot 5~‘~‘ . ,~‘AA Au
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Sputtering Time (minutes) Ni (50 nm)
Sputtering rate Ti (15 nm)
Gold 1.5 nm/s SiO, (400 nm)
Titanium 0.3 nm/s

Nickel 0.5 nm/s




TEM OF NICKEL SURFACE LAYERS () i
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Ni content was confirmed as a thin surface layer on top of the gold via AC-STEM.

FIB Pt

B after 147 hrs. at 150°C, Pixel size is 0.092nm, 94 x 12 nm field of view

03 04 05 06 07
fractional concentration of Ni-O




QUANTIFICATION COMPARISONS

Quantifications from Auger and XPS are very similar.

XPS

Ni/Au Ratio
o
N
1)

o
[y
(5]

20

30

40 50

Aging Time (hours at 150 °C)

(Au lattice parameter — measured lattice parameter)/5.548e3 = atomic % Ni substitution

Auger

Ni/Au ratio

A B_air
W D_air

o C_air

20 30
Hours of Aging

to provide useful surface information.

% Ni - GIXRD % Ni —normal XRD
0 hrs. 8 hrs. 147 hrs. 0 hrs. 8 hrs. 147 hrs.
A 1.6 -0.7 1.0 0.1 0.5 1.4
B 0.6 -0.1 -0.3 -0.1 1.9 2.5
C 1.0 0.0 -0.2 0.4 1.7 2.1
D 1.0 -0.7 0.3 1.1 1.9 2.5

Sandia
National
Laboratones

Quantifications from grazing incidence X-ray diffraction are unreliable. The depth of penetration is too large



QUANTIFICATION IN XPS =

The intensity of a photemission peak (,) is

dependent on a number of parameters. I, = O®C,0AAT

T = transmission function of analyzer

Ia - chaGMT 2.5 1 X24A Scienta Analyzer
transmission functions

2.0
——transmission mode

——angular mode

@ = X-ray flux
C, = concentration of element a
o = subshell ionization cross-section
A = probability of no-loss escape (IMFP) 10 - —
A = angular acceptance of analyzer os |
T = transmission function of analyzer

Axis Title

0 2000 4000 6000
Kinetic Energy (eV)

The parameters must be determined to make
quantification possible.



PHOTOIONIZATION AND ELECTRON ESCAPE DEP Ti| e
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= OC,oAAT I, = ®C,oAAT
o = subshell ionization cross-section A = probability of no-loss escape (IMFP)
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ON-GOING WORK — IN SITU DIFFUSION STUDIESh) s

aburatum:s

In situ thermal aging in XPS developed
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the edge the fﬂl'k.. .
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ON-GOING WORK - ACTIVATION ENERGIES Mo
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temperature (°C)
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SUMMARY o
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Conclusions

- Underlayers, such as Ni strikes, are key participants in diffusion related aging

- A simple predictive model for the rate of material accumulation has been identified
(Hwang-Balluffi) assuming some information about the films (thickness, grain size,
temperature, etc.)

- Surface accumulation behavior was asymptotic

- For Ni (and presumably other systems) the thickness of the accumulation layer will
exhibit a thickness of 1-3 nm and non-uniform coverage, greatly affecting ECR

- Oxide debris accumulation is also a concern (potential for “contact chatter”)




