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What are reactive multilayers?

Ni/Ti

Cross section

 Vapor-deposited heterostructures consisting
of two or more reactants that, when mixed,
generate heat

/M1+M2-’ M;M,
M, +M,O = M,0+M,

10’s to 1000’s of individual layers

Typical design employs single periodicity

Total thickness 0.15 - 150 um

Bilayer

Ignited at a point

Self-propagating high temperature reactions AH, (Ni-Ti) = - 34 kd/mol atoms
(deflagration)

Vapor deposited reactive multilayers were first reported
by J. Floro J. Vac. Sci. Tech. A (1986).
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Total thickness 0.15 - 150 um
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Bilayer =

Ignited at a point
AH, (Ti-Al) = - 38 kJ/mol atoms

Self-propagating high temperature reactions
(deflagration)

Vapor deposited reactive multilayers were first reported
by J. Floro J. Vac. Sci. Tech. A (1986).
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What are reactive multilayers?

 Vapor-deposited heterostructures consisting
of two or more reactants that, when mixed,

generate heat Plan view
/ Al/Pt foil
M1+M2-M1M2 "i"":'.. hoai =
M;+M,O = M.O+M, i aj
3 ;
 10’s to 1000’s of individual layers ‘

Typical design employs single periodicity | .

Total thickness 0.15 - 150 um I cm

Ignited at a point

Self-propagating high temperature reactions
(deflagration)

Vapor deposited reactive multilayers were first reported
by J. Floro J. Vac. Sci. Tech. A (1986).
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Reactive metal-metal multilayers have found
use for advanced joining technology (soldering).

Punching
- Manual (1 disc/ 5 min.)
- > 90% success rate

Punched Ni/Al/V

Fixturing and reaction

Assembly

Cross sections of soldered
interfaces using exothermic
foil as heat source.

Braze Filler

Reactive
Foil

o

Serial laser cutting

Braze Filler

-Ablation (1 disc/ 30 min.)
- > 99% success rate

3

1
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Tasks of this research

» Determine whether various reactive multilayers can be ignited at a
point using pulsed lasers and determine the typical pulse energies
required.

« Examine how ignition threshold is affected by
multilayer design

Focus on a single
pulse duration material system: Al/Pt

Path of focused,
incident laser pulse Resultant ablated hole

Reaction propagation front Reaction propagation front
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Experimental Schematic: Quantifying point
ignition thresholds

Laser systems:
_ Spectra-Physics Hurricane - Ti:sapphire
Attenuation Lambda Physik LPX-300 — KrF Excimer
Northrump Grumman — Diode fiber

Single pulse laser ignition
150 fs, 1 ps, 30 ns; 800 nm
1 ds — 10 us; 808 nm

Miry
rd

<v> Focusing lens
\ L2y >oPe

Approx. Gaussian
shaped beam

Energy released by mixing here

propagates the reaction.

Maintain a single
capping

layer species

4

Laser energy here Compound
starts the reaction

Side View

1 bilayer
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Reactive foils are ignited by pulsed lasers.

Single pulse, single point ignition with
30 ns excimer laser, 248 nm
spot size (dia.) = 8 um

« Nanosecond pulse thresholds span a
range of pulse energies ,< 1 ud to 500 ud.

» Differences between metal pairs
is attributed to enthalpy, likely affected by
mass transport and thermal transport.

-
o
o

Co/Al(AH,=-1590c/cm?3)

-
o

« Data suggests an effect of multilayer

Al/Pt (AH,=-3000c/cm3
design (i.e., bilayer thickness). (AH, c/cm?3)

Jpaii

0 200 400 600 800 1000 1200

Y. Picard, J. P. McDonald, Bilaver Thickness (A)
D.P. Adams, S.M. Yalisove
Appl. Phys. Lett. 93 (2008).
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Results compensate for reflectivity losses
(assumed to be linear %R’s)
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Threshold fluence varies with multilayer design

Single pulse, single point ignition of Al/Pt
with Ti:sapphire laser, 800 nm
spot size (dia.) = 27.2 + 0.4 um.

* Thresholds vary with

bilayer thickness. Al/Pt multilayers

* Threshold increases with Foil thickness = 1.6 um

bilayer thickness for a large
range of this dimension
(affected by mass transport)

-+- 100 fs pulse
-s- 30 ns pulse

01""-.
£
Q
—
)
S’
=
i)
=
=
o
s 10
L=
Q
Q
c
Q
=
L
|
Q
(7]
1)
-l

100.0 150.0 200.0
Bilayer Thickness (nm)

Results compensate for reflectivity loss of Pt
(assumed to be the linear R = 0.716)
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Threshold fluence varies with multilayer design

Single pulse, single point ignition of Al/Pt
with Ti:sapphire laser, 800 nm
spot size (dia.) = 27.2 + 0.4 um.

* Thresholds vary with

bilayer thickness. Al/Pt multilayers

* Threshold increases with Foil thickness = 1.6 um

bilayer thickness for a large
range of this dimension
(affected by mass transport)

-+- 100 fs pulse

-s- 30 ns pulse
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’_/nsablation threshold = 0.49 J/cm? 1
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100 fs ablation threshold = 0.15 J/cm?

« Data shown with ablation
thresholds demonstrates
strategies for laser machining
preforms for joining. _

(i.e., use fs laser light for ; . 100.0 150.0
this reactive pair) Bilayer Thickness (nm)
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Results compensate for reflectivity loss of Pt
(assumed to be the linear R = 0.716)
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Laser induced ignition: Effects of multilayer design

Single pulse, single point ignition of Al/Pt
with Ti:sapphire laser

Reduced velocity and
increased ignition fluence
are due to the effects of rel.
large amounts of premixed

reactants (present before testing) £ -+-100 fs pulse

-s- 30 ns pulse

-+ Reaction Velocity 7 B
S
L

Laser Fluence for Ignition (J/cm?)
=
Reaction Velocity (m/s)

100.0 150.0 200.0
Bilayer Thickness (nm)

Energetic

Multilaye
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Laser induced ignition: Effects of pulse duration

Single pulse, single point ignition of Al/Pt
with 800 nm (:),808 nm (=) light
spot size (dia.) = 91 um

» Decreasing thresholds for
ignition when decreasing
pulse duration from ds to
ms to 10 us (peak power is
efficient at stimulating
reaction).

-
o
o

Al/Pt multilayers of fixed design
Bilayer thickness = 123 nm

-
o

—_—

* Increased thresholds when
using ps, fs light (attribute 105 107 101 10° 107 105 103 104
to ablation, etc.)
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Laser Pulse Duration (seconds)

Results compensate for reflectivity loss of Pt
(assumed to be the linear R = 0.716)
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Ignition involves a competition of energy input
and various loss mechanisms

Finite difference simulations
of reactive multilayer ignition
- Losses via thermal conduction
and latent heat of melting

Ablation for ultrashort pulse
- loss of energetic materials

Temperature, K

0.5ms

- Al/Pt multilayers of fixed design
Bilayer thickness = 123 nm

Al/Pt multilayer
irradiated with 80% threshold

(100 femtosecond pulse duration)

then sectioned by FIB

Ignition Threshold (J/cm?)

103 103 10" 10 107 10

Laser Pulse Duration (seconds)



Summary

* Pulsed laser irradiation is a useful method for detailed studies of
reactive multilayer ignition.

* Ignition threshold of reactive multilayers
- varies with material system
- is affected by multilayer design (for a given reactive pair) and

- varies with pulse duration (for a given reactive pair of
fixed multilayer design).

D.P. Adams, 4/11



BACKUP SLIDES



Laser ignition of Al/Pt: Influence of capping layer
reflectivity

Example: Single pulse, single point ignition
with 120 ns Ti: sapphire laser, 800nm
Spot size = 8 um
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Difficulty in evaluating heat-affected-zones

Al/Pt multilayer
irradiated with 80% threshold
(100 femtosecond pulse duration)

then sectioned Reaction zone could be

solely the result of laser
Irradiation

Reaction zone could also
be affected by a partial
(incipient) reaction wave
that terminated close to the
exposed area
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Propagation rate is affected by multilayer design

* Propagation speed increases
with decreasing bilayer thickness
for a large range of designs.

consistent with R. Armstron (1990)

_ 3Aexp(-E/RT,)RT2\?
(1A PE(TT,)

V2

» Differences in speeds (for diff.
materials) owe to a larger AH,
and differences in mass/thermal

transport.
10 100 1000 .
X . » Propagation speeds affected by pre-
Bllayer thickness (nm) mixed reactants when bilayer thick-
ness is small.

AHO AHo_ Emix

Energetic
Multilaye -
] Y. Picard, J. P. McDonald,

i As-grown As-grown D.P. Adams, S. Yalisove
(ideal) (real) Appl. Phys. Lett. 93 (2008).
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Al/Pt multilayers exhibit stable reaction modes
characterized by a circular wavefront

Ex. Al/Pt multilayer
in plan view

* Reaction front is smooth when observed
at the micrometer scale Ignition 5 mm

80 us
240 us
400 us
560 us
720 us
880 us
1040 us

* No evidence of oscillations or spin waves

21 nm bilayer thickness
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Phase formed is not always according to
equilibrium diagram

New phase of Al-Pt discovered. Al, sPt, s is cubic (FeSi structure)

under equilibrium conditions
but rhombohedral as reacted film.

New rhombohedral phase has

‘ 39 formula units in the unit cell.
Simulated AlPt
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(est. -3.9x108 C/sec) can influence
Two-Theta (:degrees) phase formatlon

D.P. Adams, M. Rodriguez

D.P. Adams, 4/09 J. Mater. Res. 21 (2006).



A wide range of compositions often

exhibit self-propagating reactions

ex. Al/Pt
from Al ;5Pt ;5 to Al 55Pt 44

XRD showing
reacted products

Cubic Al . Pt .

Ll
A2
c
=3
S
©
S
=
n
Ly
ko)
o

unknown
Cubic Al 5Pt
60
Two-Theta (degrees)




D.P. Adams, 4/09

Propagation rates are influenced by
total multilayer thickness

Example: Al/Pt on substrate
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A variety of metal-metal multilayers have
been evaluated at Sandia

Exothermic Heat of Propagation Ignition
Materials Composition reaction speeds Temperatures

(2-50 micron of foil (kJ/mol atoms) (m/s) (°C)
thick foils)

Sc/Au ScAu 111 # 10 - 40 tbd
Y/Au YAu -110 # 8-15 tbd
Ti/B TiB, -102 # 10 - 30 tbd
Al/Pt AlPt -100 15-95 tbd
Ni/Al NiAl -60 # 6-10 200 - 300
Co/Al CoAl -58 0.3-10 280 - 450
Y/Ag YAg 44 # 0.5-0.8 tbd

Sc/Ag ScAg 43 # 0.2-0.5 tbd

Ni/Ti/B Ni 45Ti 4B g9 -38 0.5-45 340 - 500

Ni/Ti/C Ni 43Ti 45C oo -37 1-5.0 320 - 480
Sc/Cu ScCu -36 0.2-0.9 tbd
Ni/Ti NiTi -34 0.1-1.0 280 - 400
Y/Cu YCu -32# 02-04 tbd

# Reference deBoer




