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Objectives for Thermal Model

Predictive model for surface temperature 
versus heat load and shot time

Extract information on porous layer of 
flame-sprayed Mo with infiltrated Li 

1. thermal conductance and

2.emissivity of surface

Thermal Model and Results

 Initial work on LLD (heaters and gas cooling)

Attempt to estimate the emissivity of the Li 

Newer work (no pre-heating)

Outline
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LLD surface cross
section: plasma
sprayed porous Mo

Predictive model for Tsurface vs heat load and shot time
(subsequent viewgraphs)

 Information on porous layer of flame-sprayed Mo with Li 

1. thermal conductance and

2.emissivity of surface

Objectives for Thermal Model

LLD plates (4) 

after installation

plasma side

Relate modeling results to IR 

and TC data during operation

Sandia built 
these plates as 
part of an NSTX-
lab collaboration 
funded by a grant 
by DOE/FES.
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ABAQUS thermal model for LLD “half cell” 

solid angle 
of the half 
unit cell

bottom of LLD plate held on 
fixture

rail on fixture

brazed SS cooling tube
We use ABAQUS, a general purpose 
finite element code, for our 3-D model.  
We analyze a “half cell” of the LLD, 
and calculate temperatures over time. 

The shape comes directly from the 
CAD model for fabricating the plates

A “unit cell” contains one (of 8) 
electrical heaters in an LLD plate. 

The half cell is divided on a mirror 
symmetry plane through the heater. 

mesh viewed from 
right and left sides
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EARLY THERMAL MODEL 
& RESULTS

Strike point on LLD
swept stationary
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Initial Sweeping Study 
(old design)

• 200W heater, 25 min.

• T-start 475 K.

• 500 mm/s “sweep” 

• 5 ms heat, 2.5mm zones 

• 43 s across entire area.

SOL profile is important 

because “Tail” pre-heats Li 

ahead of strike point.

strike  

point 

heating

Heat Flux vs. Radius over LLD
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“Wings” are important 
in sweeping. 
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 Initial tests on Mo mesh

 heater failure

Sandia initially studied a CVD 
Mo-coated pyrolyzed C mesh 
as a Li reservoir for the LLD.  
The thermal conductivity of 
the mesh was unknown.

Cases not presented here

 inboard of LLD 
- pumps the outer SOL*

 outboard of LLD 
- pumps private flux region*

* longer shot times with strike point off the LLD

3 heaters

485 s

No middle 

heater

800 s

Heat  to ~480K, electrical heaters operated at 

400 W each

~10C cooling

Range among curves is ~25C, 

hottest was closest to heater.

N1

N49

N22
N31 N4

thermal history
0 s  heaters on    

900 heaters off
1140 shot (3 s)
1143 shot over

420

520

EARLY THERMAL MODEL 
& RESULTS
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Possible conditions in model:

• heating from the plasma

• heating  

- electrical heaters or hot gas

• continuous cooling

- nitrogen flow in the tube 

(before, during and after shots) 

Example of ABAQUS plots of LLD “half cell” 

Case: Heating of plate, N2 cooling

• Mo properties for Li/Moly layer 

• Initial temperature 22oC

• 400W applied to heater surface

• 0.029W/cm2K film coefficient 
and 22oC sink temperature       
for cooling tube.
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 strike point at 75 cm 
(near middle of LLD) 

 preheating with 
electrical heaters

 gas cooling

 plasma shot of 0.1s 
(4800 to 4800.1 s)

Sample of Results for R75cm 20MW/m2
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 = 119

In 0.1s at 10MW/m2 copper heats slightly, 
but Li surface is almost 120 higher.

preheat
Li = 0.2
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Behind the LLD are rails that support 
the passive pates and the vessel wall.  

The LLD radiates from the back and 
top and conducts heat through its 
support stem and the walls of the gas 
cooling tubes.

Can the cooling cycle provide information?
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Radiation, two infinite plates, solve as follows:

q1/A1 = -q2/A2 where q’s are net radiant energy leaving, also received irradiation G1 equals the 
radiosity J2 of the other and vice versa.  

Also, for a surface J = E + G and  = 1- for an opaque surface, and for a gray diffuse surface 
 = , and on gets for each surface:

J1 = 1Eb1 + (1-1)G1 and  J2 = 2Eb2 + (1-2)G2  ;  since G1= J2 , these may be solved for J1 and G1

J1 = [1Eb1 + (1-1)2Eb2]/[1-(1-1)(1-2)]

G1 = [2Eb2 + (1-2)1Eb1]/[1-(1-1)(1-2)] ; then from the 1st equation, q1/A1 = -q2/A2, we get

q/A = [Eb1 - Eb2]/[1/1 + 1/2 -1]  =   (T1
4 – T2

4)/[1/1 + 1/2 -1]

So, if we apply this separately to the front and back surfaces, but also assume that the tiles 
and the mounting structure behind the LLD are the same, then we have two the loss channels 
for both faces

r-losstop =  Atop  (TLLD
4 – TV

4)/[1/Li + 1/Tiles -1]

r-lossbott =  Abott  (TLLD
4 – TV

4)/[1/Cu + 1/SS-1]

r-total =  (TLLD
4 – TV

4) {Atop/[1/Li + 1/Tiles -1] + Abott/[1/Cu + 1/SS-1]}

Radiation Exchange between two infinite plates 
where T1 > T2

RE Nygren 26apr2010  note from Heat Transfer, Alan Chapman 4th Ed.
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LLD_BK cooling 4/8-9/2010
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TCs during long cooling of LLD section BK 

Initial treatment was encouraging with apparent strong dependence on T4.

Idea: If radiation dominates cooling (overnight) then we can estimate 

the emissivity of the Li surface from the cooling overnight .

Plot has initial treatment of slopes.
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LLD_BK cool 4/8-9/2010
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TCs during long cooling of LLD section BK 
(1PM on April 8 until after midnight)

But analysis to get a good fit showed little sensitivity for value of emissivity 

due to competing losses for conduction and radiation from back of LLD.

TC signals 

are very 

noisy.  

Running 

average of 

25 points is 

used here.
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Evaporation of Li is a quantity 

of interest.  We include the 

cooling effect of evaporation 

in the model. 

We calculate the integrated 

amount of lithium evaporated 

separately in post-processing 

based on the evolution over 

time of the temperature 

across the face of the LLD.

Cooling (W/mm2) = 595.7 * [10^(8-8143/T] /SQRT(6.941*T)

Based on the expression for vapor pressure of 3.5E22 * [10^(8-8143/T]  

from Jensson et al. (old HEDL Report) and the equation below.
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How much does evaporation of Li cool the LLD?  

Even at 900 K, the 

evaporative cooling 

is only ~0.75 MW/m2.

Our expression for evaporative cooling
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Sample of Results for R75cm 10MW/m2

0.5s: heat has penetrated to back of Cu plate (bottom of LLD) and Li surface is 
over 140 higher than the underlying Cu (top surface).  

5.0s: Li has risen from ~650K (0.5s) to 875K.  As heat load stops, temperatures 
near the top surface drop as LLD goes toward its average temperature.

Li temperature does not follow SQRT(time) but is like the linear pattern 
for heating of a solid plate after the heat reaches the back.  
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Comparison of Results (R 75cm)
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The rise in temperature of the Li 
is in proportion to the heat load.  

After 4 s at10 MW/m2, the rise is 
465 and at 5.4 MW/m2 it is 262.  

In each case the value of rise in 
temperature divided by heat load 
is 46.6 degrees per MW/m2.

Evaporative cooling is not a     
big factor here.
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Comparison of Results (R 75cm)
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Final Comments

The objectives in our thermal modeling changed as time progressed 

and results from the first campaign with the LLD became available. 

 Initially we looked at operation with electrical heaters and how we 

might estimate the thermal conductance of the real Li/Mo layer.

 Our attempts to estimate this thermal conductance and also the 

emissivity of the surface of the LLD were unsuccessful.

Many interpretations of data depend  on the temperature of a Li 

surface in the device being operated (NSTX, T-II, HT-7, EAST, FT, TJ-II)

but this is often a poorly know value. 

 Detailed thermal modeling and better understanding of the 

surface chemistry and its effect on emissivity would be useful.
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Emissivity from which lithiated surface?

Evaporation of Li is of interest.  The work function 

depends on surface chemistry and impurities.

Sandia will collaborate with Purdue University and add an 

IR camera and software to PRIHSM to monitor a heated 

lithium target while JP Allain and co-workers modify and 

monitor surface chemistry. 

Now we are modeling “cold start” cases (no preheat of LLD)         

and looking more closely at the melting and evaporation of Li.       

Our preliminary results suggest the following conclusions.

Final Comments

 The rise in temperature of the Li is less than one would find with a 

simple 1-D analysis.  The temperature peak is broader than that of 

the heat load due to lateral heat conduction away from the peak.

 Evaporative cooling is not a big factor                                                  

in the cases we have modeled so far.

 Emissivity is important for IR measurements                                     

and in our thermal modeling.
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E N D

T H A N K  Y O U



RE Nygren, Sandia National Laboratories

R630 2MW/m2 PreHeat 
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 strike point at 63 cm (near LLD’s inner edge) 

 preheating with electrical heaters

 no gas cooling  (included in other analyses)

 heating from heater(s) set by trial and  
error based on TC measurements

 plasma heating from 
4800 to 4804 s

Sample of Results for R63cm 1MW/m2

Poloidal distribution of temperature on the surface of 
the LLD model at several times during the 4-s shot.

R630 1MW/m2 Preheat

R630 1MW/m2 Preheat

R630 1MW/m2 Preheat
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