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Overview of Talk

* Overview of SCEPTRE code

* Motivation for this work

* Development of the S, and P, least-squares algorithms
* Test problem

* Convergence analyses
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SCEPTRE Code Overview
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Why Hybrid Algorithm?

* SCEPTRE applications involve coupled photon/electron

transport

—Vast range of cross-section magnitudes and scattering ratios

—First-order sweeps based algorithm efficient for streaming
dominated transport

—Second-order Trilinos based algorithm efficient for scattering
dominated transport

* Ability to leverage Trilinos tools
—Parallel linear algebra tools
—Built-in preconditioners
—Multicore capability
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Timing Comparison by Solver and Particle Type

100
< photongroups — | electron groups —I

80 |-
i — |east squares S
[ | m ow m = LS S, with block-diagonal preconditioning
i 1st order S,

60 BEEEEEE 1st order S, with DSA

AN
o

Solver Time per Group (S)
N
o

| | | I | | |
20 40 60 80 100
Group Number

\ AovAnceo Sandia
| SIMULATION & National
7 A\ ComPuTInG” 5 Laboratories



Derivation of Least Squares Algorithm (1)

First-order transport equation: () . Vl// + gl// — Q
Removal/scattering operator:

Gy = oy — [os(r,Q" - Q)y(r,Q)dQ

Expand angular flux in a set of interpolation functions:

l//(r,Q) = Zn’ ,l/}/n’un’(rig)

Form weighting functions from 1%t-order transport operator and
interpolation functions:

Wnr(r,Q) = Q -« Vun + Gun(r,Q)
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Derivation of Least Squares Algorithm (2)

* Substitute angular flux expansion into 1st-order transport equation
* Multiply by weighting functions

* Integrate over space and angle

* Assemble linear system (symmetric positive definite )

* Solve for angular flux coefficients

Z’l/\;n’IKQ * VUI’]Q ¢ Vun/> + <Q ° VUngun/>
n'

+{(GUQ - VU, )+ (GUGU /)]

= (Q - VUunQ) + (GunQ), for all n
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Comparison of Least Squares Algorithm with
Self-Adjoint Angular Flux Algorithm

* Least squares form has no dependence on the inverse of the
removal/scattering operator

* Internal voids can be handled without modification

term self adjoint least squares
streaming  (Q-Vu,G1Q-.Vu,) (Q-VuQ-Vu,)
cross terms - (€« VuaGu, +GunQ « Vu,)
removal {(UnGU /) (GuUnGU ;)
boundary EfQ - NUQU,dS -
source (Q - Vu,g1Q)+unQ) (Q - Vu,Q)+{(GunQ)
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Imposition of Boundary Conditions

* For S apply vacuum boundary conditions as Dirichlet BC
—Replace rows corresponding to incoming directions on external
boundary with boundary conditions
—Perform row and column rearrangements to maintain symmetry

* For P, apply the divergence theorem to the cross terms to

expose boundary terms

—Split boundary integrals between incoming and outgoing directions
— For outgoing directions add contribution to the system matrix
—For incoming directions add contribution to the source vector

(Q+Vungu, ) = —(UpQ -« VGu, ) + f(ﬂ « N)ULGU,/ds

(GURC2 « VU /) = —(Q - VGU U, ) + f(Q + N)GUnpU,,ds
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Comparison of Sy and Py Least Squares
Formulations

term least squares Sy least squares Py
streaming (Q -+ VuyQ-Vu,) (Q+VUupQ-Vu,)
cross terms | (Q - Vu,Gu,H)+(GunQ «Vu, )  —(UnQ -« VGu, —(Q « VGuu, )
removal (GunGU ) (GunGu )
boundary - §Q-n(ungun/+gunun/)ds
source (Q « VU,Q)+(GunQ) (Q - VunQ)+(GunQ)
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Source Void Test Problem (Ackroyd/Watanabe)
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Scalar Flux Distribution Compared with
Ackroyd's Reported MCNP Results
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Convergence analysis

e Start with coarse unstructured triangular mesh
* Successively refine by subdividing triangles into four parts
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Observed Convergence Rates for Source-Void Test Problem
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1D Mockup of Test Problem for Convergence
Analysis
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Observed Convergence Rates for 1D Mockup
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Smooth Manufactured Test Problems

* Unit slab, square or cube

* Isotropic angular flux

* Quadratic spatial dependence of angular flux

* Linear finite elements (edge, triangle or tetrahedron)
* Unit total cross section

* No scattering
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Observed Convergence Rates for Smooth P, MMS Test
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Observed Convergence Rates for Smooth S, MMS Test

2.2

theoretical

multi-D S results
show less-than-expected
convergence rates
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Why Does Multidimensional LS Sy Solver Exhibit
Lower-Than-Expected Convergence Rate?

* Differences compared with first-order transport solver
— Continuous finite elements vs. discontinuous
—Transport operator (includes spatial cross-derivative terms)

* Differences compared with LS P, Solver
—Boundary condition treatment
—Angular moments vs. discrete directions

* Differences compared with 1D transport
—Unstructured mesh vs. structured mesh
—Angular quadrature set
—Transport operator (includes spatial cross-derivative terms)
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Galerkin Treatment for Lebedev quadrature

* Needed for mapping between discrete and moments space without loss of
accuracy

* Lebedev quadrature sets have fewer directions than comparable level-
symmetric sets for the same accuracy

* Lebedev quadrature contains directions along coordinate axes
* Need fewer spherical harmonics to form non-singular moment-to-discrete

matrix
* Use Gram-Schmidt procedure to extract non-singular set of spherical
harmonics
o orger| | Mumberdiections | o O ecrete matrx
Level symmetric | Lebedev Level symmetric Lebedev
8 6 1 1
4 24 14 3 2
80 38 7 4
16 288 110 15 8
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Summary

* Least-squares S, and P algorithms implemented and tested
in SCEPTRE

* Coupled with first-order sweeps-based algorithm
* Expected convergence rates observed for 1D S and P, LS tests

* Less-than-expected convergence rates observed for multi-D S
LS tests

* Developed procedure for computing Galerkin scattering set
for Lebedev quadrature
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