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Overview of Talk

• Overview of SCEPTRE code

• Motivation for this work

• Development of the SN and PN least-squares algorithms

• Test problem

• Convergence analyses
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SCEPTRE Code Overview

time dependent solver

multigroup solver

first order sweeps-based 
within group solver

second order Trilinos-based 
within group solver

scatter/fixed source

angular flux and moments



4

Why Hybrid Algorithm?

• SCEPTRE applications involve coupled photon/electron 
transport
–Vast range of cross-section magnitudes and scattering ratios
–First-order sweeps based algorithm efficient for streaming 

dominated transport
–Second-order Trilinos based algorithm efficient for scattering 

dominated transport

• Ability to leverage Trilinos tools
–Parallel linear algebra tools
–Built-in preconditioners
–Multicore capability
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Derivation of Least Squares Algorithm (1)

    G  Q

G   t  sr,  r,d

Removal/scattering operator:

First-order transport equation:

Expand angular flux in a set of interpolation functions:

r,  
n nunr,

Form weighting functions from 1st-order transport operator and 
interpolation functions:

wnr,    un  Gunr,
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Derivation of Least Squares Algorithm (2)

• Substitute angular flux expansion into 1st-order transport equation

• Multiply by weighting functions

• Integrate over space and angle

• Assemble linear system (symmetric positive definite )

• Solve for angular flux coefficients


n


n  un  un     unGun 

 Gun  un   GunGun 

   unQ  GunQ, for all n
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Comparison of Least Squares Algorithm with 

Self-Adjoint Angular Flux Algorithm

term self adjoint least squares

streaming   unG1  un    un  un 

cross terms -   unGun Gun  un 

removal unGun  GunGun 

boundary   nununds -

source   unG1QunQ   unQGunQ

• Least squares form has no dependence on the inverse of the 
removal/scattering operator

• Internal voids can be handled without modification
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Imposition of Boundary Conditions

• For SN apply vacuum boundary conditions as Dirichlet BC
–Replace rows corresponding to incoming directions on external 

boundary with boundary conditions
–Perform row and column rearrangements to maintain symmetry

• For PN apply the divergence theorem to the cross terms to 
expose boundary terms
–Split boundary integrals between incoming and outgoing directions
–For outgoing directions add contribution to the system matrix
–For incoming directions add contribution to the source vector

  unGun   un  Gun     nunGunds

Gun  un     Gunun     nGununds
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Comparison of SN and PN Least Squares 

Formulations

term least squares SN least squares PN

streaming   un  un    un  un 

cross terms   unGun Gun  un  un  Gun   Gunun 

removal GunGun  GunGun 

boundary -   nunGun  Gunun ds

source   unQGunQ   unQGunQ
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Source Void Test Problem (Ackroyd/Watanabe)
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Scalar Flux Distribution Compared with 

Ackroyd's Reported MCNP Results
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Convergence analysis

level 0 level 1

• Start with coarse unstructured triangular mesh

• Successively refine by subdividing triangles into four parts
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Mesh Refinement Level
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1D Mockup of Test Problem for Convergence 

Analysis
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Mesh Refinement Level
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Smooth Manufactured Test Problems

• Unit slab, square or cube

• Isotropic angular flux

• Quadratic spatial dependence of angular flux

• Linear finite elements (edge, triangle or tetrahedron)

• Unit total cross section

• No scattering
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Mesh Refinement Level
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Mesh Refinement Level
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Why Does Multidimensional LS SN Solver Exhibit 

Lower-Than-Expected Convergence Rate? 

• Differences compared with first-order transport solver
–Continuous finite elements vs. discontinuous
–Transport operator (includes spatial cross-derivative terms)

• Differences compared with LS PN Solver
–Boundary condition treatment
–Angular moments vs. discrete directions

• Differences compared with 1D transport
–Unstructured mesh vs. structured mesh
–Angular quadrature set
–Transport operator (includes spatial cross-derivative terms)
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Galerkin Treatment for Lebedev quadrature

• Needed for mapping between discrete and moments space without loss of 
accuracy

• Lebedev quadrature sets have fewer directions than comparable level-
symmetric sets for the same accuracy

• Lebedev quadrature contains directions along coordinate axes

• Need fewer spherical harmonics to form non-singular moment-to-discrete 
matrix

• Use Gram-Schmidt procedure to extract non-singular set of spherical 
harmonics

SN order
Number directions

Maximum complete Legendre order in 
Galerkin moment-to-discrete matrix

Level symmetric Lebedev Level symmetric Lebedev

2 8 6 1 1

4 24 14 3 2

8 80 38 7 4

16 288 110 15 8
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Summary

• Least-squares SN and PN algorithms implemented and tested 
in SCEPTRE

• Coupled with first-order sweeps-based algorithm

• Expected convergence rates observed for 1D SN and PN LS tests

• Less-than-expected convergence rates observed for multi-D SN

LS tests

• Developed procedure for computing Galerkin scattering set 
for Lebedev quadrature


