

Least Squares Finite Elements Algorithms in the SCEPTRE Radiation Transport Code

SAND2011-3050C

Clif Drumm and Wesley Fan
Sandia National Laboratories
crdrumm@sandia.gov

Andrew Bielen
Department of Nuclear and Mechanical
Engineering
The Pennsylvania State University

Jeffrey Chenhall
Nuclear Engineering and Radiological Sciences
The University of Michigan

*International Conference on Mathematics and Computational Methods
Applied to Nuclear Science and Engineering (M&C 2011)*

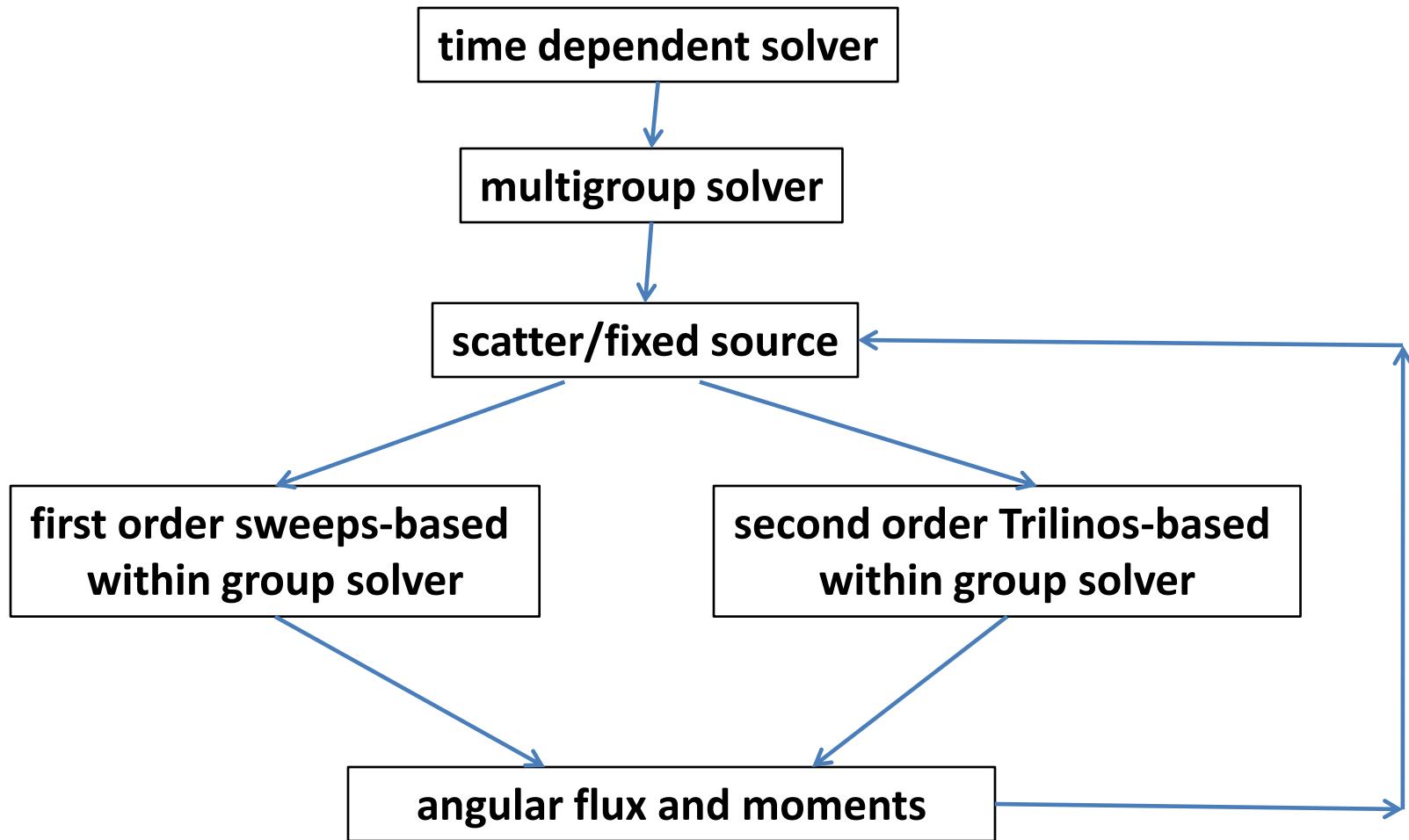
Rio de Janeiro, RJ, Brazil, May 8-12, 2011

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview of Talk

- Overview of SCEPTR code
- Motivation for this work
- Development of the S_N and P_N least-squares algorithms
- Test problem
- Convergence analyses

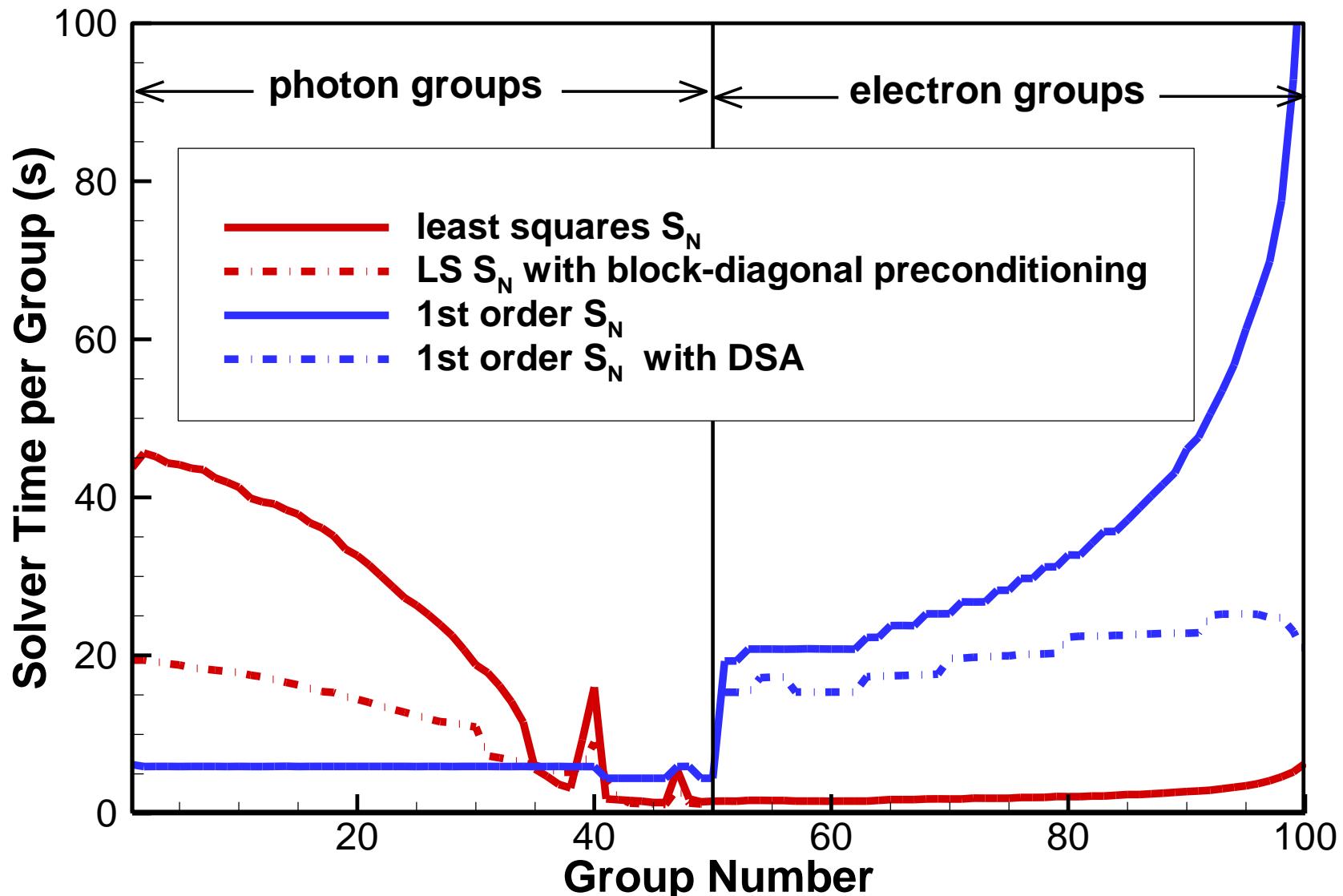
SCEPTRE Code Overview



Why Hybrid Algorithm?

- **SCEPTRE applications involve coupled photon/electron transport**
 - Vast range of cross-section magnitudes and scattering ratios
 - First-order sweeps based algorithm efficient for streaming dominated transport
 - Second-order Trilinos based algorithm efficient for scattering dominated transport
- **Ability to leverage Trilinos tools**
 - Parallel linear algebra tools
 - Built-in preconditioners
 - Multicore capability

Timing Comparison by Solver and Particle Type



Derivation of Least Squares Algorithm (1)

First-order transport equation: $\Omega \cdot \nabla \psi + \mathcal{G}\psi = Q$

Removal/scattering operator:

$$\mathcal{G}\psi = \sigma_t \psi - \int \sigma_s(\mathbf{r}, \Omega' \cdot \Omega) \psi(\mathbf{r}, \Omega') d\Omega'$$

Expand angular flux in a set of interpolation functions:

$$\psi(\mathbf{r}, \Omega) \simeq \sum_{n'} \tilde{\psi}_{n'} u_{n'}(\mathbf{r}, \Omega)$$

Form weighting functions from 1st-order transport operator and interpolation functions:

$$w_n(\mathbf{r}, \Omega) = \Omega \cdot \nabla u_n + \mathcal{G}u_n(\mathbf{r}, \Omega)$$

Derivation of Least Squares Algorithm (2)

- Substitute angular flux expansion into 1st-order transport equation
- Multiply by weighting functions
- Integrate over space and angle
- Assemble linear system (symmetric positive definite)
- Solve for angular flux coefficients

$$\begin{aligned} & \sum_{n'} \tilde{\psi}_{n'} [\langle \boldsymbol{\Omega} \cdot \nabla u_n \boldsymbol{\Omega} \cdot \nabla u_{n'} \rangle + \langle \boldsymbol{\Omega} \cdot \nabla u_n \mathcal{G}u_{n'} \rangle \\ & \quad + \langle \mathcal{G}u_n \boldsymbol{\Omega} \cdot \nabla u_{n'} \rangle + \langle \mathcal{G}u_n \mathcal{G}u_{n'} \rangle] \\ & = \langle \boldsymbol{\Omega} \cdot \nabla u_n Q \rangle + \langle \mathcal{G}u_n Q \rangle, \text{ for all } n \end{aligned}$$

Comparison of Least Squares Algorithm with Self-Adjoint Angular Flux Algorithm

- Least squares form has no dependence on the inverse of the removal/scattering operator
- Internal voids can be handled without modification

term	self adjoint	least squares
streaming	$\langle \Omega \cdot \nabla u_n \mathcal{G}^{-1} \Omega \cdot \nabla u_{n'} \rangle$	$\langle \Omega \cdot \nabla u_n \Omega \cdot \nabla u_{n'} \rangle$
cross terms	-	$\langle \Omega \cdot \nabla u_n \mathcal{G} u_{n'} \rangle + \langle \mathcal{G} u_n \Omega \cdot \nabla u_{n'} \rangle$
removal	$\langle u_n \mathcal{G} u_{n'} \rangle$	$\langle \mathcal{G} u_n \mathcal{G} u_{n'} \rangle$
boundary	$\oint \Omega \cdot \mathbf{n} u_n u_{n'} \mathbf{d}s$	-
source	$\langle \Omega \cdot \nabla u_n \mathcal{G}^{-1} Q \rangle + \langle u_n Q \rangle$	$\langle \Omega \cdot \nabla u_n Q \rangle + \langle \mathcal{G} u_n Q \rangle$

Imposition of Boundary Conditions

- For S_N apply vacuum boundary conditions as Dirichlet BC
 - Replace rows corresponding to incoming directions on external boundary with boundary conditions
 - Perform row and column rearrangements to maintain symmetry
- For P_N apply the divergence theorem to the cross terms to expose boundary terms
 - Split boundary integrals between incoming and outgoing directions
 - For outgoing directions add contribution to the system matrix
 - For incoming directions add contribution to the source vector

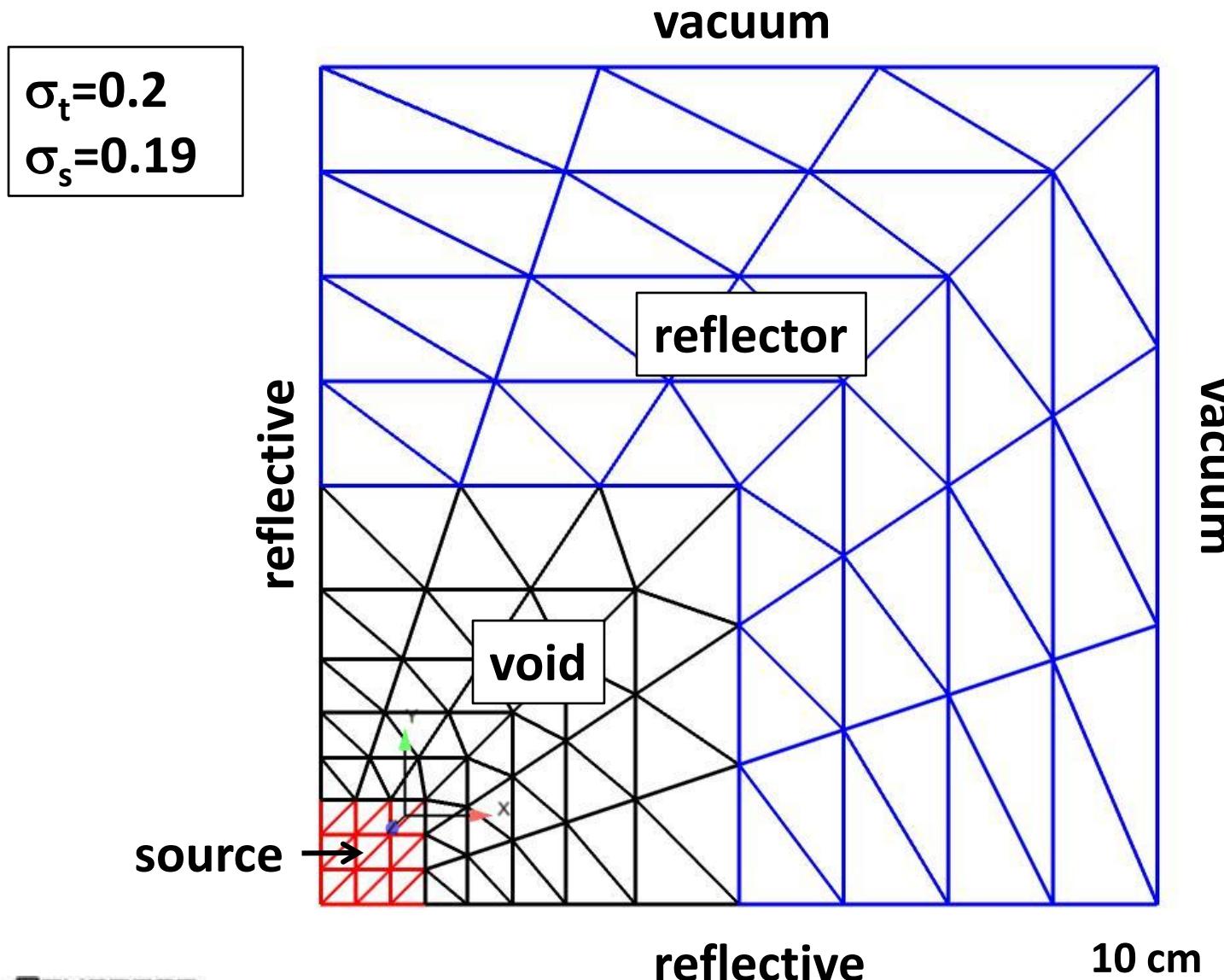
$$\langle \boldsymbol{\Omega} \cdot \nabla u_n \mathcal{G}u_{n'} \rangle = -\langle u_n \boldsymbol{\Omega} \cdot \nabla \mathcal{G}u_{n'} \rangle + \oint (\boldsymbol{\Omega} \cdot \mathbf{n}) u_n \mathcal{G}u_{n'} \mathbf{ds}$$

$$\langle \mathcal{G}u_n \boldsymbol{\Omega} \cdot \nabla u_{n'} \rangle = -\langle \boldsymbol{\Omega} \cdot \nabla \mathcal{G}u_n u_{n'} \rangle + \oint (\boldsymbol{\Omega} \cdot \mathbf{n}) \mathcal{G}u_n u_{n'} \mathbf{ds}$$

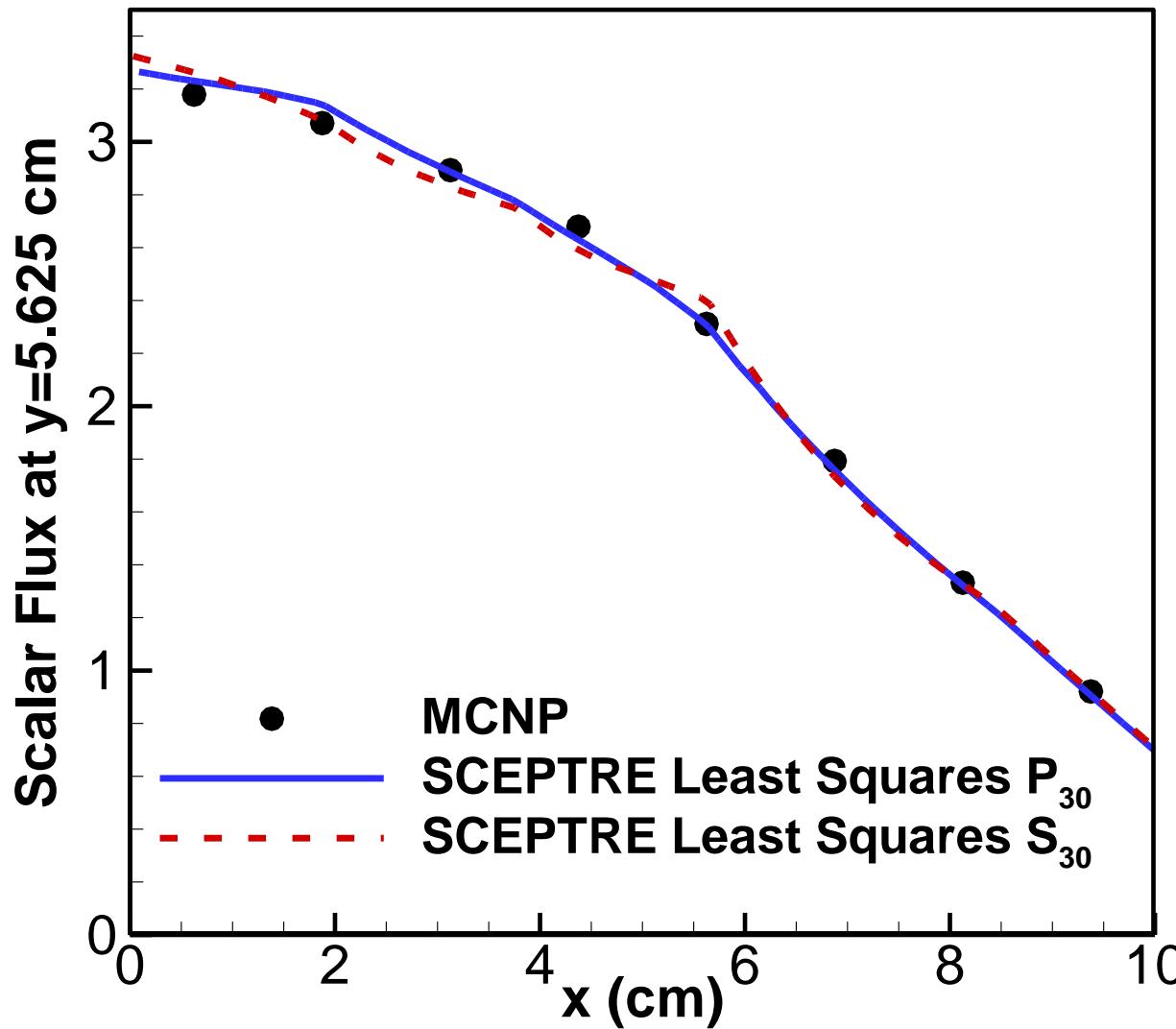
Comparison of S_N and P_N Least Squares Formulations

term	least squares S_N	least squares P_N
streaming	$\langle \Omega \cdot \nabla u_n \Omega \cdot \nabla u_{n'} \rangle$	$\langle \Omega \cdot \nabla u_n \Omega \cdot \nabla u_{n'} \rangle$
cross terms	$\langle \Omega \cdot \nabla u_n \mathcal{G}u_{n'} \rangle + \langle \mathcal{G}u_n \Omega \cdot \nabla u_{n'} \rangle$	$-\langle u_n \Omega \cdot \nabla \mathcal{G}u_{n'} \rangle - \langle \Omega \cdot \nabla \mathcal{G}u_n u_{n'} \rangle$
removal	$\langle \mathcal{G}u_n \mathcal{G}u_{n'} \rangle$	$\langle \mathcal{G}u_n \mathcal{G}u_{n'} \rangle$
boundary	-	$\oint \Omega \cdot \mathbf{n} (u_n \mathcal{G}u_{n'} + \mathcal{G}u_n u_{n'}) \mathbf{ds}$
source	$\langle \Omega \cdot \nabla u_n Q \rangle + \langle \mathcal{G}u_n Q \rangle$	$\langle \Omega \cdot \nabla u_n Q \rangle + \langle \mathcal{G}u_n Q \rangle$

Source Void Test Problem (Ackroyd/Watanabe)

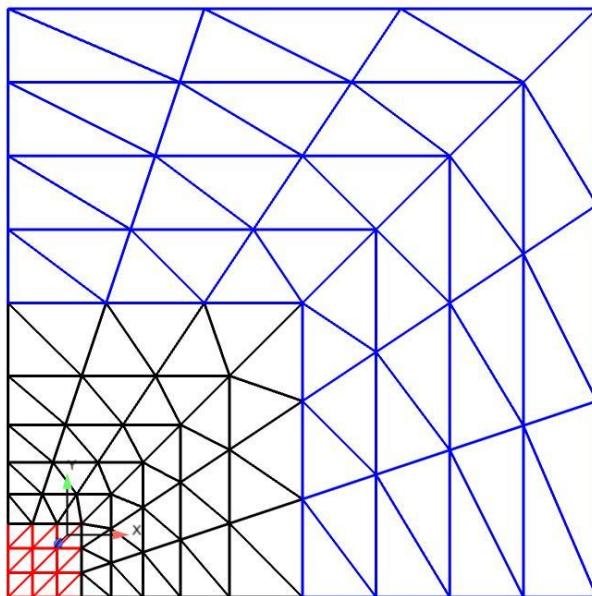


Scalar Flux Distribution Compared with Ackroyd's Reported MCNP Results

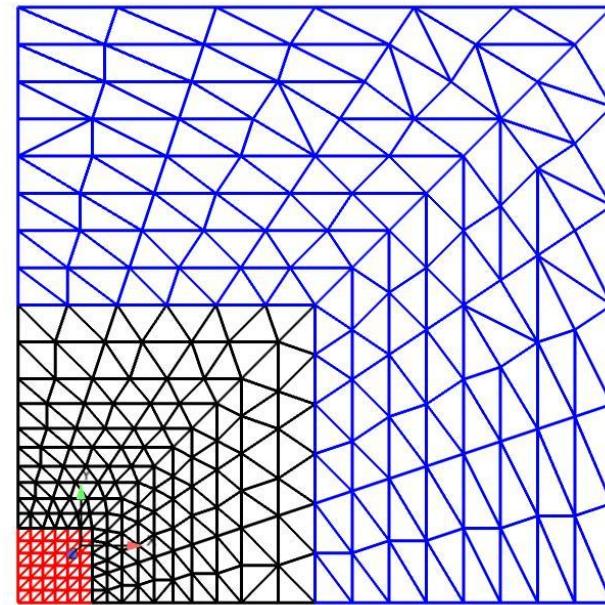


Convergence analysis

- Start with coarse unstructured triangular mesh
- Successively refine by subdividing triangles into four parts

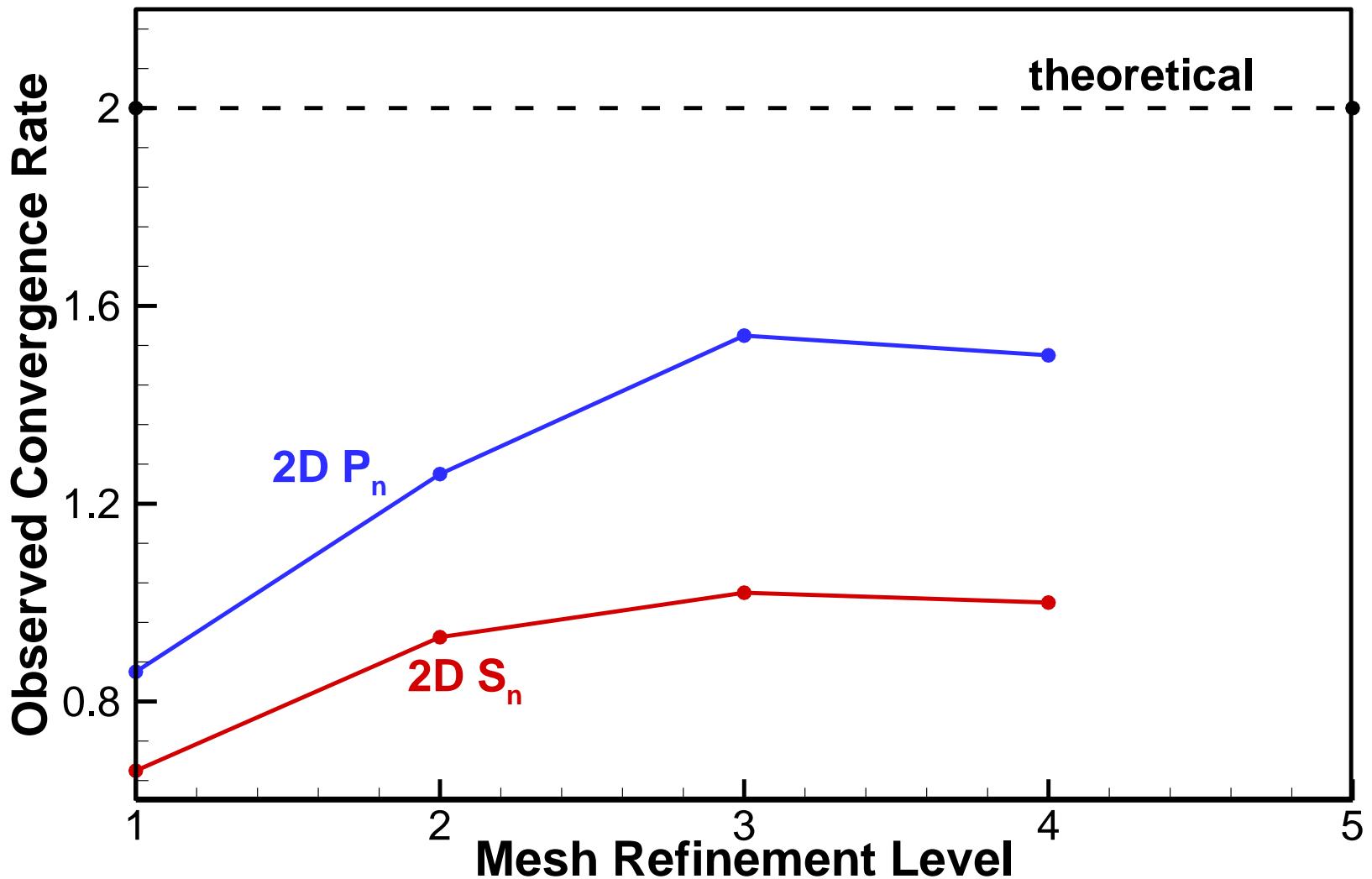


level 0

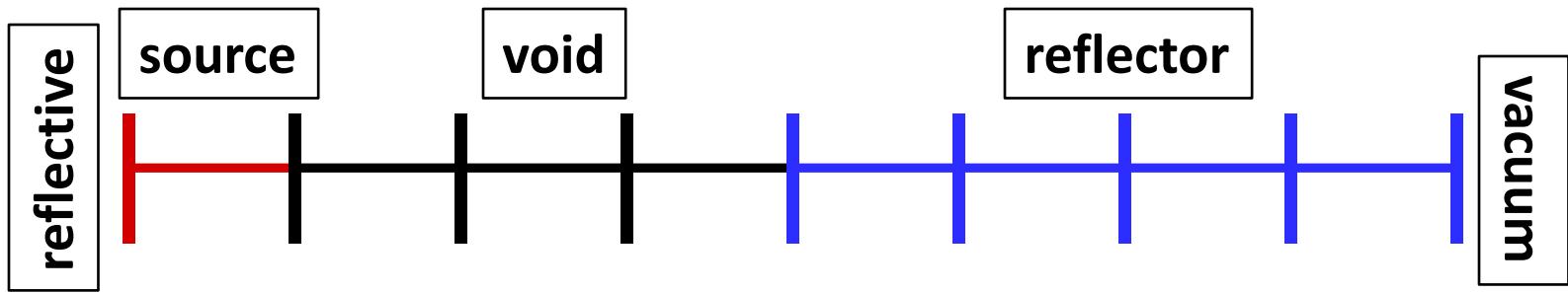


level 1

Observed Convergence Rates for Source-Void Test Problem

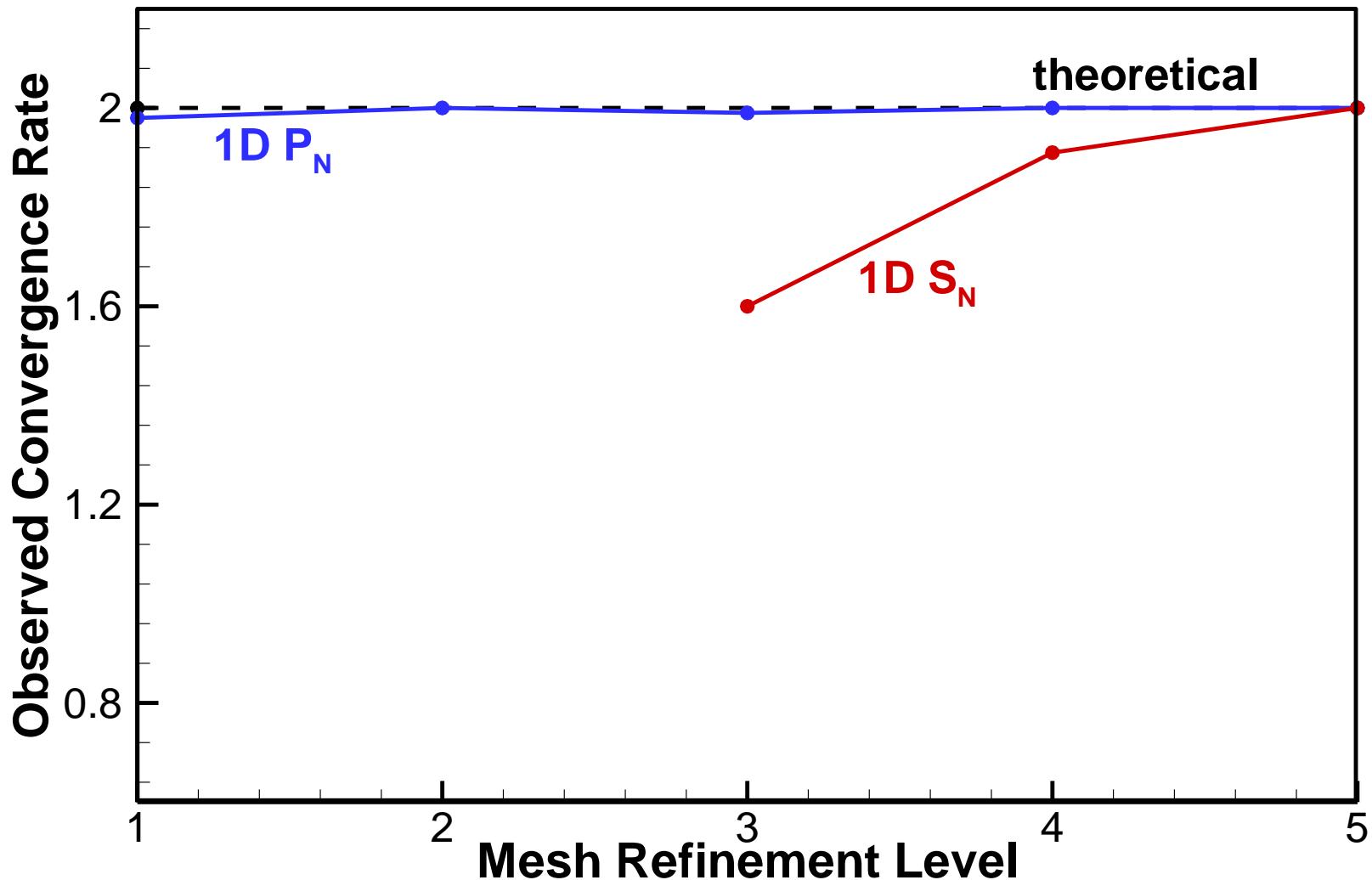


1D Mockup of Test Problem for Convergence Analysis



$$\begin{aligned}\sigma_t &= 0.2 \\ \sigma_s &= 0.19\end{aligned}$$

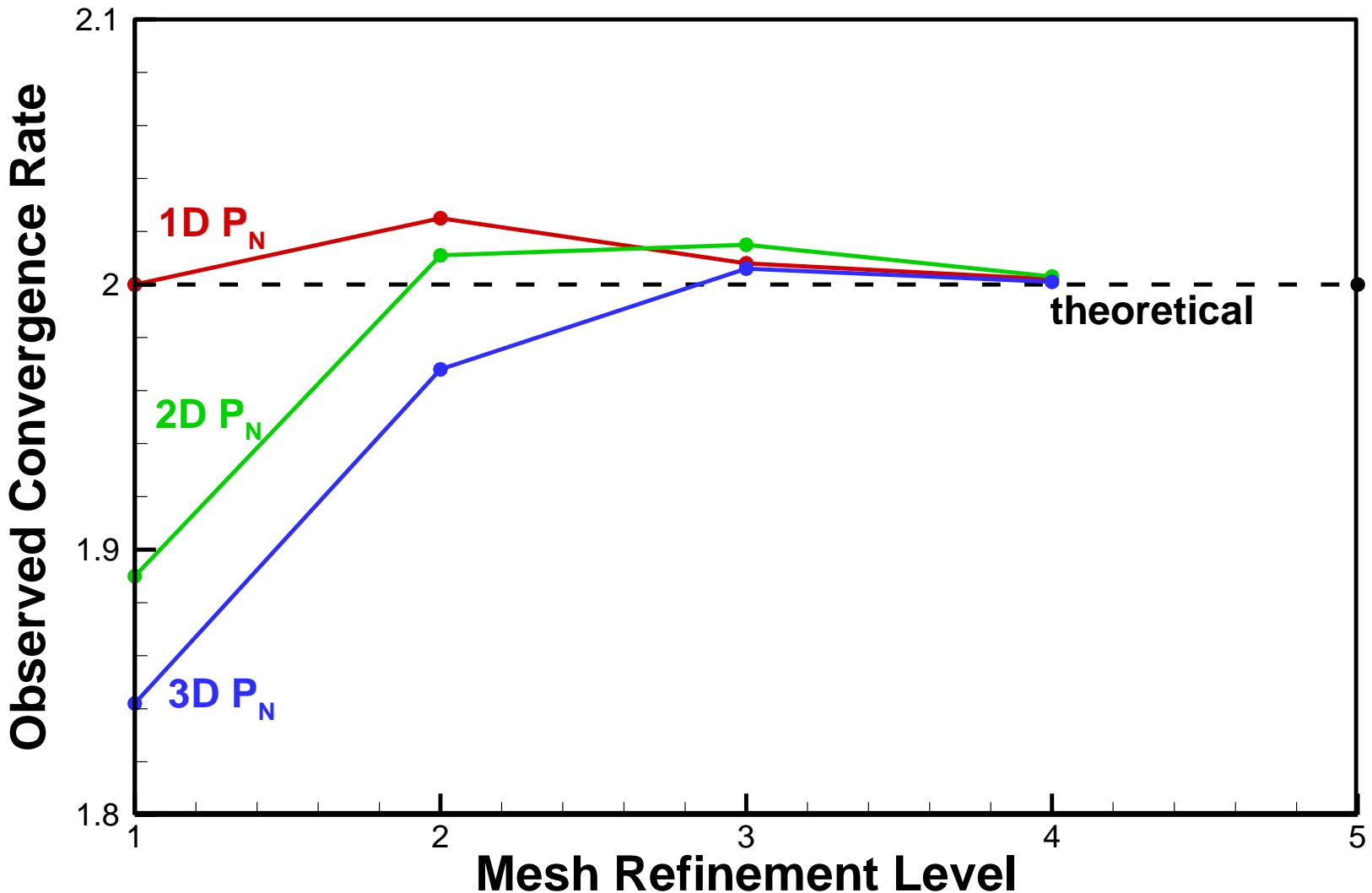
Observed Convergence Rates for 1D Mockup



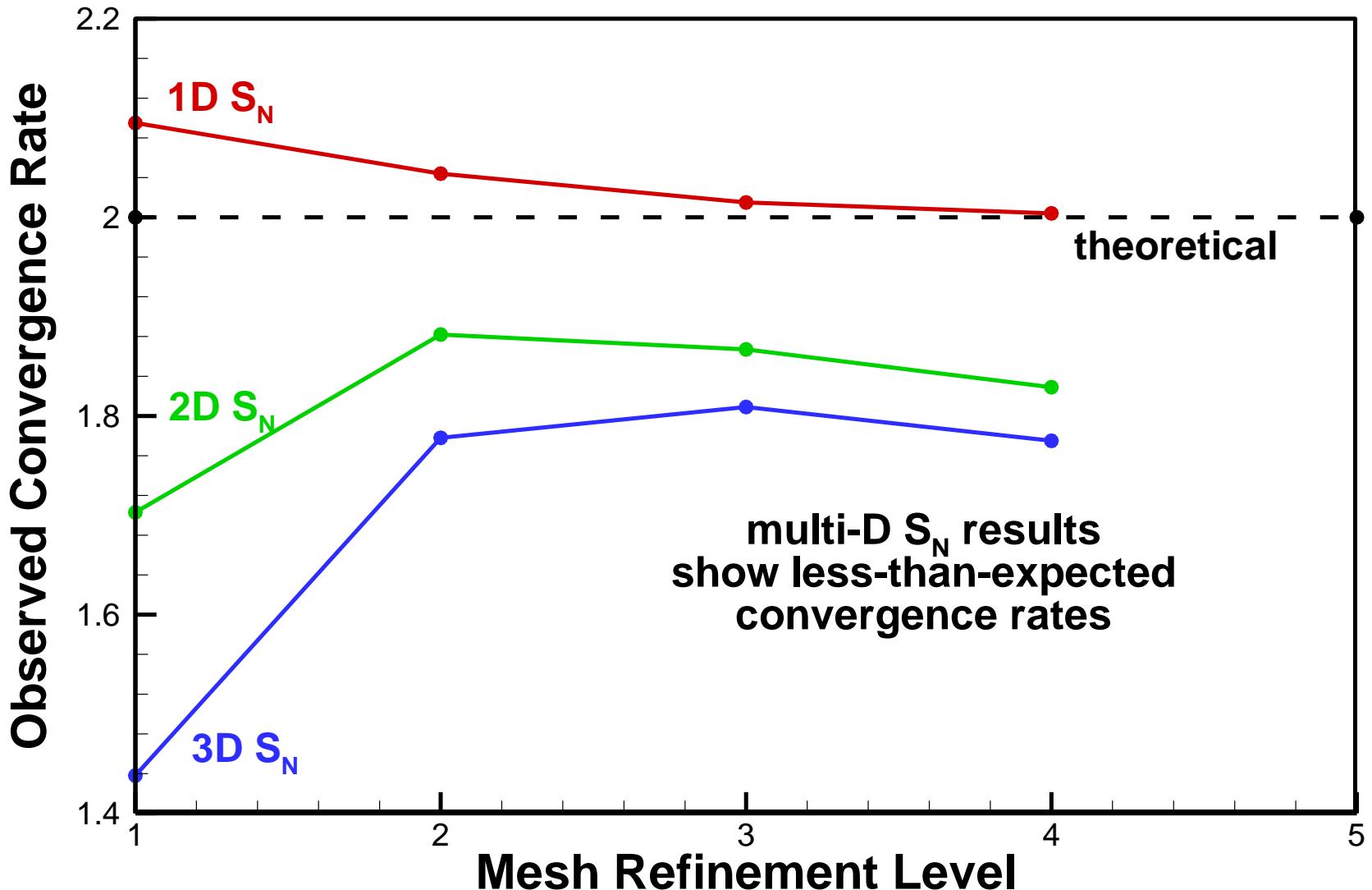
Smooth Manufactured Test Problems

- Unit slab, square or cube
- Isotropic angular flux
- Quadratic spatial dependence of angular flux
- Linear finite elements (edge, triangle or tetrahedron)
- Unit total cross section
- No scattering

Observed Convergence Rates for Smooth P_N MMS Test



Observed Convergence Rates for Smooth S_N MMS Test



Why Does Multidimensional LS S_N Solver Exhibit Lower-Than-Expected Convergence Rate?

- **Differences compared with first-order transport solver**
 - Continuous finite elements vs. discontinuous
 - Transport operator (includes spatial cross-derivative terms)
- **Differences compared with LS P_N Solver**
 - Boundary condition treatment
 - Angular moments vs. discrete directions
- **Differences compared with 1D transport**
 - Unstructured mesh vs. structured mesh
 - Angular quadrature set
 - Transport operator (includes spatial cross-derivative terms)

Galerkin Treatment for Lebedev quadrature

- Needed for mapping between discrete and moments space without loss of accuracy
- Lebedev quadrature sets have fewer directions than comparable level-symmetric sets for the same accuracy
- Lebedev quadrature contains directions along coordinate axes
- Need fewer spherical harmonics to form non-singular moment-to-discrete matrix
- Use Gram-Schmidt procedure to extract non-singular set of spherical harmonics

S_N order	Number directions		Maximum complete Legendre order in Galerkin moment-to-discrete matrix	
	Level symmetric	Lebedev	Level symmetric	Lebedev
2	8	6	1	1
4	24	14	3	2
8	80	38	7	4
16	288	110	15	8

Summary

- Least-squares S_N and P_N algorithms implemented and tested in SCEPTRE
- Coupled with first-order sweeps-based algorithm
- Expected convergence rates observed for 1D S_N and P_N LS tests
- Less-than-expected convergence rates observed for multi-D S_N LS tests
- Developed procedure for computing Galerkin scattering set for Lebedev quadrature