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Microstructure influences material properties and their 
variation 

•  Materials are intrinsically inhomogeneous 
–  Predicting microstructure’s influence on properties is an ongoing challenge  
–  Relationship between microstructural variability and property statistics is 

unknown. 

•  Butt weld two 304L stainless plates 
•  Cut out 40 equivalent tensile specimens 

Microstructural 
variability affects 

properties 

Science-based, probabilistic 
engineering models must 
include microstructural effects. 
 

C.V. Robino, SNL 



Microstructure is the critical link between  
atomic-scale processes and engineering applications 
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Microstructure is the critical link between  
atomic-scale processes and engineering applications 

Single crystal  
behavior 

 
crystal plasticity 

 
XRD, EBSD, 

µmachining, µtesting 
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effects 
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Atomic-level simulations can study small groups of the entities 
that comprise the microstructure 

Classes of defects 
•  “0-dimensional” defects 

–  Impurities, vacancies, 
interstitials, defect clusters… 

•  “1-dimensional” defects 
– Dislocations 

•  “2-dimensional” defects 
–  Twins, fault planes, grain 

boundaries, interphase 
interfaces, surfaces, … 

Properties of interest 
•  Thermodynamics 
•  Motion 
•  Interaction between defects 

–  Energetics: e.g. binding 
– Dynamics: e.g. barriers 

•  Collective motion of defects 

General challenges: 
•  Can only explicitly treat a ‘few’ defects for a ‘short’ time 
•  Real materials are incredibly complex 



Atomic-scale to single crystal properties: 
Dislocation behavior in BCC metals 

•  Atomic scale simulations show dislocation core spreading onto adjacent 
(110) planes in BCC metals. 
–  Core spreading creates a significant Peierls barrier to dislocation motion. 
–  Because the dislocation spreads onto three planes, motion can be 

affected by stress components outside the preferred slip plane,  
i.e. non-Schmid stresses. 

[111] zone depiction of a relaxed 
screw dislocation core in Mo 

Groger, Vitek et al. Acta Mat. 56 (2008) 5412  

Distortion of the dislocation core 
under an applied shear stress 



Implications of non-Schmid deformation 

•  The non-Schmid stress components arise from two causes: 
–  Asymmetry within the slip plane (twinning/anti-twinning) is a minor effect. 
–  Contributions by stress components outside the slip plane are significant. 

“…glide of the 1/2[111] screw dislocation [on the (-101) plane] depends on shear stresses both 
parallel and perpendicular to the Burgers vector that act not only in the slip plane but also in 

other {110} planes of the [111] zone.” 
-Groger, Vitek et al. Acta Mat. 56 (2008) 5412. 

The non-Schmid stress 
components cause the 
widely observed tension-
compression asymmetry 
in BCC metals 

Mo 



Brute Force MD can follow grain growth in nanocrystals 
What do we learn? 

T = 0.75 TM; 39 nm cube; 7.0 ns 

• Formation of twin boundaries 
• Vacancies seen in grain interior 
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•  Initial transient is not physical 
•  Conventional scaling of grain size with 

time1/2 observed for significant period 
•  Why does the growth slow down?!? 



MD simulations can study individual boundaries: 
Catalog of mobility for 388 Ni grain boundaries 

Could consider crystallographic 
dependence of mobility. 

-But no trends in M found 
-But not enough data to interpolate 

Could look for groups of similar 
boundaries, regardless of 
crystallography 

-High mobility boundaries 
-Low mobility boundaries 

How could one use such data? 

Transition temperature between low/high mobility 

•  Relative fraction of High and 
Low mobility boundaries is 
temperature dependent 

•  In many boundaries, 
associated with roughening  



Mesoscale Microstructure Simulations reveal the 
consequences of temperature dependent population of 

High/Low mobility boundaries  

•  Monte Carlo Potts Model simulations 
–  Low mobility: M ~ 0 
–  High Mobility: M ~ 1 
–  Fraction, f0, of High/Low mobility 
–  Allow system to evolve via normal 

grain growth physics 
- Grain size stagnates 
- f0 determines final size 
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Explanation of grain growth stagnation in pure metals? 
Holm, Foiles, Science 328, 1138 (2010) 

Convert temperature to 
fraction of low mobility 
boundaries 



Availability of appropriate interatomic potentials is the 
Achilles Heal of molecular dynamics 

•  Quality of interatomic potentials determines the 
quality of the results 

–  No GIGO!! 
•  Keep the goal of the simulations in mind 

–  Quantitative vs Illustrative 
•  Typical potential development process 

–  Assume functional forms (ad hoc or 
physically based) 

–  Adjust functions/parameters to fit a set of 
training data 

–  Publish it and watch it get used for problems 
it was not intended for! 

–  Highly time and labor intensive 
»  “Will the potential be ready in time?” 

•  Potentials for multiple materials classes are rare 
and often suspect 



Interatomic Potential Wish List 

•  A full spectrum of approximations for computing the energy/forces in 
simulations 
–  Highly accurate quantum techniques for specific critical quantities 

»  Will naturally be computationally expensive and only able to treat a 
small number of atoms 

–  Highly efficient techniques that get the essential features 
»  Will allow for the treatment of complex processes with the goal of 

qualitative insight 
–  Spectrum of intermediate methods 

»  This is not a “one size fits all” problem!! 
•  Ability to develop potentials ‘quickly’ 

–  Currently potentials often available too late to contribute 

Need New Ideas! 

GaussianApproximationPotentials: TheAccuracy ofQuantumMechanics, without theElectrons

Albert P. Bartók and Mike C. Payne
Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

Risi Kondor
Center for the Mathematics of Information, California Institute of Technology, MC 305-16, Pasadena, California 91125, USA

Gábor Csányi
Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

(Received 1 October 2009; published 1 April 2010)

We introduce a class of interatomic potential models that can be automatically generated from data

consisting of the energies and forces experienced by atoms, as derived from quantum mechanical

calculations. The models do not have a fixed functional form and hence are capable of modeling complex

potential energy landscapes. They are systematically improvable with more data. We apply the method to

bulk crystals, and test it by calculating properties at high temperatures. Using the interatomic potential to

generate the long molecular dynamics trajectories required for such calculations saves orders of

magnitude in computational cost.

DOI: 10.1103/PhysRevLett.104.136403 PACS numbers: 71.15.Nc, 31.50.!x, 34.20.Cf, 65.40.De

Atomic scale modeling of materials is now routinely and
widely applied, and encompasses a range of techniques
from exact quantum chemical methods [1] through density
functional theory (DFT) [2] and semiempirical quantum
mechanics [3] to analytic interatomic potentials [4]. The
associated trade-offs in accuracy and computational cost
are well known. Arguably, there is a gap between models
that treat electrons explicitly and those that do not. Models
in the former class are in practice limited to handling a few
thousand atoms, while the simple analytic interatomic
potentials are limited in accuracy, regardless of how they
are parametrized. The panels in the top row of Fig. 1
illustrate the typical performance of analytic potentials in
bulk semiconductors. Perhaps surprisingly, potentials that
are generally regarded as adequate for describing these
bulk phases show significant deviation from the quantum
mechanical potential energy surface. This in turn gives rise
to significant errors in predicting properties such as elastic
constants and phonon spectra.

In this Letter we are concerned with the problem of
modeling the Born-Oppenheimer potential energy surface
(PES) of a set of atoms, but without recourse to simulating
the electrons explicitly. We mostly restrict our attention to
modeling the bulk phases of carbon, silicon, germanium,
iron, and gallium nitride, using a unified framework. Even
such single-phase potentials could be useful for calculating
physical properties, e.g., the thermal expansion coefficient,
the phonon contribution to the thermal conductivity, the
temperature dependence of the phonon modes, or as part of
hybrid schemes [5].

The first key insight is that this is actually practicable:
the reason that interatomic potentials are at all useful is that
the PES is a relatively smooth function of the nuclear
coordinates. Improving potential modeling is difficult not

because the PES is rough, but because it does not easily
decompose into simple closed functional forms. Secondly,
away from isolated quantum critical points, the behavior of
atoms is localized in the sense that if the total energy of a
system is written as a sum of atomic energies,

E ¼
Xatoms

i

"ðfrijgÞ; (1)

where rij ¼ rj ! ri is the relative position between atoms i
and j, then good approximations of E can be obtained by
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FIG. 1. Deviation of atomic forces between DFT and various
models: the Brenner [18] and Tersoff [19] potentials and differ-
ent GAP models for different semiconductors. In the bottom row
the horizontal lines correspond to the smallest standard deviation
of the error theoretically attainable given the range of the
potential (see text). The configurations are taken from molecular
dynamics runs at 1000 K.

PRL 104, 136403 (2010) P HY S I CA L R EV I EW LE T T E R S
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Analysis/Visualization of Atomic-level simulation data is 
often an ad hoc, inefficient process 

•  Large-scale molecular dynamics simulation 
–  Raw Output: Time evolution of 106+ coordinates 
–  Desired Output: Behavior/properties of higher-

length-scale objects 
»  Examples: dislocations, grain boundaries 

•  Substantial effort has been made to create efficient, 
massively-parallel codes for MD simulations such as 
LAMMPS 

•  Analysis and visualization has received substantially 
less effort 
–  Analysis of MD data can require compute 

resources that are a substantial fraction of basic 
MD run 

–  Methods and code are home-grown and highly 
problem specific 
»  Choice of analysis often dictated by availability 

of codes rather than most useful approach 

•  Ga vacancy 
•  As Vacancy 
•  Ga interstitial 
•  As interstitial 
•  As in Ga anti-site 
•  Ga in As anti-site 

50 nm 



Determination of Defect Structure is often very difficult 
and frequently given insufficient care  

•  One typically knows the bulk structure, 
but must guess/compute the actual 
structure of defect 
–  Nota Bene!  Incorrect structure 

means wrong results! 
•  Typical approaches use local minimum 

searches (e.g. conjugate gradient) plus, 
in good cases, multiple initial states 
–  Major effort in grain boundary work 

discussed earlier 
•  Global optimization problem involving 

both continuous and discrete variables 
–  “Relaxation” of atomic coordinates 
–  Optimize species at each site in 

alloys 
–  “Add/Remove” atoms 
–  Interstitial atoms – where and how 

many 

Ag(111)/Ru(0001) 
Ling, et al., PRL 92 116102 (2004) 

Cu/Al Σ5(310) 
Campbell, et al., Interface Science 12, 165 (2004) 
 



Finite-temperature effects are often underexplored 

•  Connection to higher length scales is often 
through thermodynamic quantities such as 
interfacial free-energy 
–  Clearly temperature dependent 
–  Often calculated at T = 0 

•  Structures and properties may change with 
temperatures 
–  Elastic constants are temperature 

dependent 
»  Leads to gb structure change on left 

–  Variations of dynamic properties with 
temperature may not be what one 
expects 
»  Currently exploring this for the case of 

grain boundary motion 

Author's personal copy

Ni is computed and compared to the temperature depen-
dence of the elastic moduli times the lattice constant com-
puted for the same model of Ni.

The calculations here all use the same embedded
atom method (EAM) [11] potential for Ni developed
by Foiles and Hoyt [12]. This potential provides a rea-
sonable description of the elastic properties, as seen be-
low, and stacking fault energies of Ni. The computed
melting point for this model is 1565 K compared to
the experimental melting point of 1726 K. In the follow-
ing, homologous temperatures are based on the melting
point of this model.

The grain boundary considered in this study is a sym-
metric R79 (!3 !7 10)/[1 1 1] tilt boundary. Due to the
low density of coincident sites, this boundary should
be a reasonable surrogate for a general boundary. The
structure of this boundary was determined in an earlier
study [13,14]. The boundary structure optimization
combined multiple conjugate gradient minimizations of
different possible initial structures and the consideration
of different combinations of atom addition and removal
to obtain a near optimal structure.

The free energy of the grain boundary as a function
of temperature is determined in two manners. For low
temperatures, in this case T/TM 6 0.25, the free energy
is determined via quasi-harmonic (QH) approximation
calculations [15]. The QH approach is expected to be
reliable at these temperatures since the atomic displace-
ments are small. In addition, this temperature is near the
Debye temperature of the bulk Ni and the QH approach
incorporates quantum effects that are significant below
the Debye temperature. In these calculations, the
dynamical matrix of the system is computed and the
phonon spectrum of the entire system is determined
using standard techniques [11,15]. The free energy of
the full system is then obtained using the analytic
expression for the free energy of a set of harmonic
oscillators,

F ¼ kBT
X

j

ln 2 sin h
hvj
2kBT

! "

where T is the temperature, h is Planck’s constant, kB is
Boltzman’s constant and the mj are the normal mode fre-
quencies of the oscillators. The structure used is the
zero-temperature structure uniformly expanded to the
finite-temperature lattice constant determined by a bulk
quasi-harmonic calculation. The interfacial free energy
is then determined from the difference in free energy of
the system with the grain boundary and that of a bulk
system with the same number of atoms.

For higher temperatures, T P 0.25TM, the free en-
ergy is computed via thermodynamic integration follow-
ing the procedure described in detail by Frolov and
Mishin [16]. A series of Monte Carlo (MC) simulations
are performed at differing temperatures with the bulk
lattice constant chosen to yield zero stress in the bulk.
In these simulations, random displacements of the
atoms are considered and the cell is allowed to expand
or contract in the direction normal to the interface.
The averages are computed over runs of about 80,000
MC steps per atom. The required averages could also
be obtained using molecular dynamics (MD) simula-

tions. For each temperature, one calculates the excess
enthalpy, Uex, and the interfacial stress, s. The interfa-
cial free energy can then be obtained by integrating
the equation

d
cA
T

! "
¼ !U ex

T 2 dT þ 2sA
T

@e
@T

! "

rij¼0

where A is the interfacial area and e is the strain required
to maintain zero bulk stress, r. Note that one cannot ex-
tend this approach to zero-temperature due to the diver-
gence of the integrand.

The last quantity that we need to calculate is the tem-
perature-dependent elastic constants. In this work we
follow the procedure used by Wolf et al. [17]. In this ap-
proach, MD simulations are performed in the microca-
nonical ensemble with the internal energy and density
chosen to yield the desired temperature and zero bulk
pressure. The elastic constants are then evaluated from
Eqs. (3.4)–(3.8) of Ref. [17]. In the simulations per-
formed here, a preliminary simulation in the isother-
mal–isobaric ensemble is performed for a periodic cell
of 4000 atoms and a time of 200 ps to create an initial
state. A second simulation at constant energy and vol-
ume for an additional 200 ps, using the final state of
the first simulation as a starting point, is then per-
formed. The elastic constants are obtained by averaging
over the second simulation. It should be noted that there
is an inconsistency in the method of calculation used at
low temperatures between the grain boundary free en-
ergy calculations and the elastic constant calculations.
The grain boundary calculations employ quantum sta-
tistics at low temperatures while the elastic constant cal-
culations employ classical statistics. However, at low
temperatures fluctuations make only a modest contribu-
tion to the elastic constant calculations, so it is not ex-
pected that the difference between the use of classical
and quantum descriptions of the fluctuations will alter
the conclusions of this paper.

Figure 1 shows the computed grain boundary free en-
ergy, c, for the symmetric R79 grain boundary described
above as a function of temperature from zero tempera-
ture to near the melting point. Similar to the results
for a R5 boundary determined in a prior study [3], there
is a substantial variation of c such that its value at the
melting point is about a third of the low-temperature va-
lue. There is also a point shown at zero temperature in
Figure 1. This is the classical zero-temperature grain
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Figure 1. The temperature dependence of the grain boundary free
energy, c (in mJ m!2, for a symmetric R79 tilt boundary computed as
described in the text for an EAMmodel of Ni. The point at T = 0 is the
classical zero-temperature excess energy computed for this boundary.

232 S. M. Foiles / Scripta Materialia 62 (2010) 231–234

Ni Σ79 free energy 
Foiles, Scripta Mater. 62, 231 (2010) 
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We report the finding of a novel grain-boundary structural phase transition in both molecular-dynamics

and phase-field-crystal simulations of classical models of bcc Fe. This transition is characterized by

pairing of individual dislocations with mixed screw and edge components. We demonstrate that this type

of transition is driven by a combination of factors including elastic softening, core interaction, and core

disordering. At high homologous temperatures the occurrence of this transition is shown to prevent

premelting at misorientation angles where it would otherwise be expected.

DOI: 10.1103/PhysRevLett.106.046101 PACS numbers: 68.35.bd, 68.35.Ct, 68.35.Rh

The properties of polycrystalline materials are often
strongly influenced by processes occurring at internal
grain boundaries (GBs). These processes themselves are
known to be strongly influenced by the details of GB
interfacial atomic structure. Because of its broad impor-
tance, theoretical, computational, and experimental studies
of GB structure have been pursued for several decades [1].
These studies have established that GB structures at low
temperatures (T) are generally characterized by multiple
metastable energy minima, corresponding, for example, to
different numbers of atoms and relative displacements of
the grains [1–3]. At high T, GB structures can be even more
complex, as different metastable minima can be sampled
through thermal fluctuations, and these interfaces can
undergo a variety of phase transitions involving, e.g., de-
faceting and roughening [4,5], premelting [6], and solute-
driven structural transformations [7]. This high-T behavior
can have important consequences for properties relevant to
materials processing, including GB mobility [5,8] and
shear strength [9,10].

From a fundamental viewpoint, GB structures are gen-
erally difficult to predict theoretically except in certain
limits. One important limit is that of small misorientation
angle (!) between crystal grains where a GB consists of
an array of well-separated dislocations interacting through
the long-range elastic field. In a pioneering analysis, Read
and Shockley derived from this picture a theoretical ex-
pression for the GB energy ("GB) [11–13]

"GB ¼ E0!ðA# ln!Þ; (1)

where#E0! ln! % EE is the dominant elastic contribution
to the energy of the array of GB dislocations, while
E0A! % EC accounts for core effects and subdominant
elastic contributions. In this Letter we show how an

interplay of EC and EE can lead to a novel GB phase
transition involving a change in dislocation character.
Specifically, we use molecular-dynamics (MD) and

phase-field-crystal (PFC) simulations to explore the struc-
ture of high-T [100] symmetric tilt GBs for classical
models of bcc Fe, over a wide range of !. This study
reveals the existence of a GB structural transition, illus-
trated in Figs. 1(a) and 1(b), involving pairing of GB
dislocations with mixed screw and edge character to
form pure edge dislocations. At high T the pairing

FIG. 1 (color). MD snapshots of lower (a),(b) and higher (c)
angle [100] symmetric tilt GBs close to the melting temperature
in bcc Fe. The boundary plane is vertical in (a) and (b) and
horizontal in (c). Panel (a) [(b)] shows the low (high) tempera-
ture configuration for a [100] (0 9 11) GB heated (cooled) to
T ¼ 1300 K. Panel (c) shows a [100] (013) GB at 5 K below
melting. Atomic positions have been time averaged and colored
according to the value of a local structural order parameter [25]
(see supplemental material [16]). Red (blue) atoms have disor-
dered (ordered) local atomic environments. In (a) the atoms
away from the boundary on one side are farther from the viewer
by half the interplanar distance [16].

PRL 106, 046101 (2011) P HY S I CA L R EV I EW LE T T E R S
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T-dependent grain boundary in Fe 
Olmsted, et al., PRL 106, 046101 (2011) 



Opportunities/Future 

•  Increased validation and discovery from the 
detailed comparison of computations and 
experiments at the nanoscale 
–  Advances in experimental methodology that 

permit examination at smaller scales 
–  Advances in computation that permit 

simulations at larger scales 
Comparison of calculated and experimental gb energy 
Holm, et al., Acta Mater, in press. 

•  Understand the variability of materials properties  
–  “Paradigm shift, from the idealistic view that all parts are created equal, 

to the realistic view that structure, properties, and performance are 
probabilistic” 
»  Corbette Battaile, SNL 

–  This variability originates at the atomic/mesoscale 
–  Increasingly important as structures move to ever smaller sizes 


