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Appropriately-designed reactive multilayers exhibit 
self-propagating reactions.

Bilayer

Ni/Ti
Cross section 

1 m

• Heterostructures that consist 
of two or more reactants that, 
when mixed, generates heat

M1+M2 M1M2

M1+M2O     M1O+M2

• 10’s to 1000’s of individual layers

• Typical design employs single periodicity

• Total thickness   0.15 -150 m

• Exhibit Self-propagating Synthesis (SHS)

• Non-explosive and typically no gas

• Sputter deposited in 10-8 Torr base pressure
system
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Early references (vapor deposited reactive multilayers)



Nickel / titanium is of interest
for its intriguing mechanical properties.
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Reports on compacted powders 

Applications:

 Shape memory for near equiatomic NiTi

 Superelastic, 8% recoverable strain T > Taus
f

• Exhibit SHS and thermal explosion 
when particle size ~ 10 m

• Require pre-heating (above room
temperature) for SHS

• Tig ~ 910 + 10C for 10 m particle size

• Reported that the oxidation of Ti subsequently
triggered SHS of Ni-Ti 

Moore, Feng  Prog. Mat. Sci. 1995, p. 286
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Yi, Moore Scr. Met.1988

E-T diagram from Moore  et al.
with updated properties

NiTi(s)
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E-T diagram from Moore  et al.
with updated properties

Does not react 
as powder

without pre-heat
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Ho (rutile TiO2 ) = -912 kJ/mol 

Ho (NiO) = -239 kJ/mol 

Yi, Moore Scr. Met.1988

Ho (TiO ) = -515 kJ/mol 

Tad (Tig) 
in air

E-T diagram from Moore  et al.
with updated properties



Tasks of this research

High level:  Determine if vapor-deposited, equiatomic Ni/Ti multilayers 

exhibit self-propagating reactions with no pre-heating (above room 

temperature)

Focus:  examine how the surrounding gaseous environment affects 

- propagation speed

- reaction mode

- final phase

D.P. Adams,  4/11



Nickel / titanium foils exhibit SHS in air.

D.P. Adams,  4/11

• Ni/Ti exhibits SHS in air without pre-heating.
(ignition with 9 V battery, pulsed laser or other)



Nickel / titanium foils exhibit SHS in air.
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• Propagation speed increases
with decreasing  bilayer thickness
for a large range of designs.

• Maximum propagation speed of ~ 1 m/s
for 5 m thick foils (equiatomic).

SHS in air
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• Ni/Ti exhibits SHS in air without pre-heating.
(ignition with 9 V battery, pulsed laser or other)

Y. Picard, J. Mcdonald, S.M. Yalisove, 
D.P. Adams, 

Appl. Phys. Lett. 93 (2008).



Nickel / titanium foils exhibit SHS in air.
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• Propagation speed increases
with decreasing  bilayer thickness
for a large range of designs.

• Maximum propagation speed of ~ 1 m/s
for 5 m thick foils (equiatomic).

• Decreased speed at small bilayer thickness
due to premixed reactants.

SHS in air
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• Ni/Ti exhibits SHS in air without pre-heating.
(ignition with 9 V battery, pulsed laser or other)

Y. Picard, J. Mcdonald, S.M. Yalisove, 
D.P. Adams, 

Appl. Phys. Lett. 93 (2008).



Nickel / titanium foils exhibit SHS in vacuum.

D.P. Adams,  4/11

10-5 10-4 10-3 10-2 10-1 100 101 102 103

Single foil design evaluated (above): 
Bilayer thickness = 4730 Å
Total thickness = ~ 5.0 m  

Ti capped (two sides)

• Average propagation speed of Ni/Ti
is affected by reaction environment.

• Maximum average propagation 
speed at atmospheric pressure
(for our tests).

• Average propagation speed appears
to be constant for pressure < 1 Torr.

Measurements by 
high-speed photography



High-speed photography reveals that Ni/Ti 
exhibits an unstable propagation mode 

(when tested in vacuo)

D.P. Adams,  4/11

0 ms 0.4 ms

1 mm

0.8 ms 1.2 ms 1.6 ms

2.0 ms 2.4 ms 2.8 ms 3.2 ms 3.6 ms

4.0 ms 4.4 ms 4.8 ms 5.2 ms 5.6 ms

• Reactions occur by the propagation
of transverse reaction bands
(this resembles spin modes in 
cylindrical compacted powder samples).

• Transverse reaction bands nucleate
at foil edges and, occasionally, via
the ‘collision’ of bands.

• Transverse band speed exceeds
average propagation speed.

Ni/Ti foil (equiatomic)
Bilayer thickness = 4730 Å; Total thickness = ~ 5.0 m  

Ti capped (two sides); P = 300 mTorr



High-speed photography shows that Ni/Ti 
exhibits unstable reaction modes 

when reacted in air
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0 ms 0.4 ms

1 mm

0.8 ms 1.2 ms 1.6 ms

2.0 ms 2.4 ms 2.8 ms 3.2 ms 3.6 ms

4.0 ms 4.4 ms 4.8 ms 5.2 ms 5.6 ms

• Similar to reactions in vacuum, 
reaction bands propagate
transversely.

• A second reaction ‘wave’ appears
behind the intermetallic reaction front.

• Frequency of transverse bands
is increased when air is present.

Plan view images

Ni/Ti foil (equiatomic)
Bilayer thickness = 4730 Å; Total thickness = ~ 5.0 m  

Ti capped (two sides); P = 670 Torr



High-speed photography shows how air 
increases the average propagation speed of 

Ni/Ti

D.P. Adams,  4/11

In Air

In Vacuum

(10 mTorr)

• Frequency of transverse bands
is increased when air is present.

• Detailed measurements suggest
that reaction advances solely
by propagation of transverse bands.

• Other Ni/Ti multilayer designs
exhibit similar behavior.

Ni/Ti foil (equiatomic)
Bilayer thickness = 4730 Å; Total thickness = ~ 5.0 m  

Ti capped (two sides)



Reaction front morphology: evidence of 
instabilities and colliding reaction fronts
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Spin wave 
propagates 

in pre-heated 
region

Instability: heat buildup at 
edge yields next spin wave

J. Mcdonald, D.P. Adams, 
Appl. Phys. Lett. 94 (2009).
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Reaction front morphology: evidence of 
instabilities and colliding reaction fronts
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Observed
origins 

1. Collision of spin 
waves

2. Heat buildup at 
foil edge

J. Mcdonald, D.P. Adams, 
Appl. Phys. Lett. 94 (2009).
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Final phases of Ni/Ti are affected
by reaction environment.
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X-ray diffraction

• As-deposited multilayers are composed of
elemental Ni and Ti.

• Foils reacted in vacuum generally form a
mixture of B2 NiTi (or hexagonal NiTi) 
and B19’ NiTi with evidence for other 
intermetallic compounds Ni3Ti, NiTi2).

• Foils reacted in air form a mixture of Ni-Ti
intermetallic compounds and crystalline
TiO2 (rutile and anatase).

NiTi2

Single foil design evaluated (above): 
Bilayer thickness = 625 Å

Total thickness = ~ 5.0 m  

D.P. Adams,  4/11

D.P. Adams, M.A. Rodriguez, 
J. Appl. Phys. (2009).



Reacted Ni/Ti foil composition is affected
by reaction environment

Reacted in Vacuum (1 mTorr)

C O

Ni

Ti

Reacted in air

C

O
Ni

Ti

Single foil design evaluated (above): 
Bilayer thickness = 4730 Å
Total thickness = ~ 5.0 m  

Ti capped (two sides) initially• TixOy forms to a depth of approx.
800 nm on both sides when reacted
in air.

• Minimal amounts of oxygen are present
within foils reacted at 1 mTorr.

• Similar behavior is observed regardless 
of capping layer (Ni or Ti).

Auger electron spectroscopy
D.P. Adams,  4/11



Summary

• Sputter-deposited, reactive Ni/Ti multilayer foils exhibit self-propagating, high
temperature synthesis (SHS) reactions in air and in vacuum.  Oxidation of Ti
is not necessary for stimulating / triggering Ni-Ti reactions !!

• Nickel / titanium SHS reactions are characterized by moderate average 
propagation speeds and unstable (spin-like) modes (reactions in air, vacuum).

• The gaseous environment affects several characteristics of Ni/Ti multilayers 
and their reactions including

- average propagation speed

- reaction mode (frequency of spin waves)

- final phase

• We speculate that an increased average propagation speed in air
is due to an increased frequency of spin waves nucleated at a foil edge.

• Additional reactive multilayer systems are similarly affected by environment.

D.P. Adams,  4/11



EXTRA SLIDES



Interactions with gaseous environments: 
Evidence of trailing combustion waves

D.P. Adams, 2/10

Example:  Sc/Cu multilayer – shown in plan view

• Second reaction wave is
an oxidation reaction

- crystalline Sc2O3 phases
observed when reacted in 
air

• Second reaction wave is 
not observed when reacted
in vacuum.

500 m

J. Mcdonald, D.P. Adams, 
J. Mater. Res. (2010).



Exothermic multilayers are deposited at Sandia 
using magnetron DC sputter methods.

Multiple deposition systems
10-9 - 10-8 Torr base pressure
Ar sputter gas
In-situ quartz crystal monitors

Capabilities:
> 99 % uniformity across 8” area
Sample at 45oC during deposition
Precision of layer thickness:10-15 Å

Other:
Adjust film thicknesses to 

compensate for densities

Generally, multilayer is peeled off to ‘create’ a foil for testing.
D.P. Adams,  4/11



Single phase B2 NiTi forms when bilayer 
thickness is made small (~ 10 nm)
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‘Slow’ film having NiTi2 ppts.
Ni/Ti reacted (SHS)
in vacuum

tBL= 83 nm

We expect that the small spacing promotes mixing and homogeneity

D.P. Adams, 4/09

D.P. Adams,  et al.
J. Appl. Phys. 106 (2009)



• Reactive foils ignite at temperatures
far below the melting point of their
constituents.

compare with bulk Ni - Ti  powder 
(with m periodicity)   Tig ~ 910+10oC

- reference Yi and Moore Scr. Met.
1988

• Ignition temperatures vary with
bilayer thickness (i.e., periodicity)
with more coarse multilayers having
higher Tig.

.

Global annealing leads to high-temperature 
reaction (potentially thermal explosion)
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Estimated heating rate ~ 1-10 deg./ms

Experiment
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A variety of metal-metal multilayers have
been evaluated at Sandia

Exothermic

Materials

(2-50 micron 
thick foils)

Composition

of foil

Heat of 
reaction

(J/g)

Propagation

speeds 

(m/s)

Adiabatic 

reaction 

temperatures

(oC)

Ti/B TiB2 -4403 to -5240 10 - 30 3275

Al/Pt AlPt -1505 to -1870 15 - 95 2798

Ni/Al NiAl -1400 to -1680 6 -10 >1637

Co/Al CoAl -1120 to -1350 0.3 – 10 >1639

Sc/Au ScAu -917 10 - 40 unknown

Ni/Ti/B Ni.43Ti.48B.09 -772 0.5 - 4.5 unknown

Y/Au YAu -769 8 - 15 unknown

Ni/Ti/C Ni.43Ti.48C.09 -751 1 – 5.0 unknown

Sc/Cu ScCu -663 0.2 - 0.9 unknown

Ni/Ti NiTi -637 0.1 – 1.0 1568

Sc/Ag ScAg -562 0.2 – 0.5 unknown

Y/Ag YAg -447 0.5 – 0.8 unknown

Y/Cu YCu -419 0.2 – 0.4 unknown

Compare with

Ho (Fe/KClO4) ~ 
-1560 J/g
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Phase a b c d e f g h i j k l m n o p q r s t u v w x y z 1 2 3 4 5 6 7 8

B2 NiTi X X X X X

Hex NiTi X X X X X X

B19’ NiTi X X X X X X X X X X X X

Ni3Ti X X X X X X X

Ni4Ti3 X X X X X X

NiTi2 X X X X X X X X

TiO2

Rutile
X X X X X X X X X X

TiO2

Anatase
X X X X

NiO 
Bunsenite

X X X
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