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Motivation: Tetrahedral Meshes

@ Solid mechanics on hex meshes: mixed staggered Q1/Q0
formulation
» continuous linear kinematic variables
» discontinuous piece-wise constant stresses
» requires various hourglass controls (e.g. Belytschko-Flanagan)
@ Tet meshes for solids:

» use of automated fast meshing
» ease of use for mesh adaptivity
» ease of coupling with other physics (thermal, electromagnetic)
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Overview of Recent Research

Swansea: Bonnet, Burton, Marriot, Hassan, (P1/P1-projection)

SANDIA: Dohrman, Key, Heinstein, Bochev, (P1/P1-projection)

TU Munich-SANDIA: Gee, Wall, Dohrman, (P1/P1+P1/P0-+proj.)

LLNL: Puso, Solberg, (P1/P1+P1/P0-+proj.)

RPI: Maniatty, Klaas, Liu, Shephard, Ramesh, (P1/P1-stabilized)
Chorin’s projection: Onate, Rojek, Taylor, Pastor (P1/P1)

UPC Barcelona: Chiumenti, Cervera, Valverde, Codina (P1/P1-stabilized)
UIUC: Nakshatrala, Masud, Hjelmstad, (P1/P1+bubble)

Swansea Il: Bonet, Gil, (P1/P1-stabilized)

Berkeley/Pavia: Taylor, Auricchio, Lovadina, Reali, (Mixed enhanced)
UCSD/University of Padua: Krysl, Micheloni, Boccardo (Mixed enhanced)
Caltech: Thoutireddy, Ortiz, Molinari, Repetto, Belytschko (Composite Tets)
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Governing Equations (Mixed Form)
@ Solve for {d,v,a,p} satisfying momentum conservation, Cauchy
stress decomposition, and velocity definition:
pv=V-o+p-b, oc=pl+a, d=v. (1)

@ Assume 7 is a function of the kinematics (strains, strain rates),
state variables, the history of 7, etc.

@ In the linear case we have the mixed system for displacement (u)
and pressure (p):

pit—V -Eu)—Vp = f
p—kV-u = 0

where £(u) is the deviatoric strain tensor.
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Linear Elasticity: Static Case

@ Stabilization for linear elasticity is very similar to Stokes flow
@ Incompressible case:

» P1/P0 locking (as in P1 displacement formulation)
» P1/P1 checkerboard instability for pressure

@ Solution for P1/P1: Hughes/Franca/Balestra stabilization (1986):
enrich the velocity/displacement (x) with a residual-based term

h2
u=u,+u, u=-1 Z(—Vph =V - e(un) —f)

@ Stabilization derives from the additional pressure Laplacian
@ This is now called Variational Multiscale (VMS) stabilization
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Linear Elasticity: Dynamic Case

@ The Hughes/Franca/Balestra stabilization extends naturally to
time-dependent Stokes/Navier-Stokes flows

@ We could not find an appropriate 7 that worked for linear dynamics

@ The issue appears to be the different character of the PDEs:
» elliptic: Stokes and elasticity
» parabolic: time-dependent Stokes
» hyperbolic: time-dependent elasticity

@ Our solution is to formulate the pressure equation in rate form:

which pairs naturally with the momentum equation:

K p—=V-v =
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Linear Elasticity: Dynamic VMS

@ The stabilization then is analogous to what is used for the linear
acoustic wave equation

@ We add in subgrid scales {V', p’} defined using residuals

@ The resulting pressure Laplacian and velocity div-div terms
provide stabilization

Carnes (Sandia) Solids on Tets MULTIMAT 2013 9/23



Linear Elasticity: Verification

@ We verified the linear elastic case under various options:
static/dynamic, tri/quad, compressible/incompressible,
struct/unstruct grids

@ Verification test: analytic pressure/velocity/displacement with valid
solution in the incompressible limit (here v = 0.4995)
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Nonlinear Dynamics: Hyper-elasticity

@ We concentrate on mixed constitutive models with pressure:
oc=pl+ao

@ Pressure is assumed a function of the volumetric part of the
deformation gradient:
p=rU(J) ()

where J is the determinant of the deformation gradient F, U is an
energy function and « is a bulk modulus parameter.

@ Deviatoric stress is defined in terms of 7 and b = F FT, for
example using a neo-Hookean law

o= u]‘5/3l_y

Carnes (Sandia) Solids on Tets MULTIMAT 2013 11/23



Nonlinear Dynamics: J, Plasticity

@ For plasticity, the pressure often remains a function of J

@ The deviatoric stress is computed through an associative flow
rule, with inclusion of constraints and plastic strain

@ We have implemented a simple plasticity model (Simo and
Hughes, 1998) using linear hardening and a product factorization:

F=FF

@ Extensions to other models (e.g. hypo-elasticity) should be
possible provided that

» we have separate models for  and p, and
» the pressure remains a function only of J

Carnes (Sandia) Solids on Tets MULTIMAT 2013 12/23



Pressure Evolution Equation and VMS

@ The nonlinear pressure equation in an evolution form:
p=rU"J)JV - v=k(J)V -
where we used the identity
J=JV v,

@ We have defined an effective bulk modulus that varies as the
material undergoes volume change.

R =rU"(1)J

@ VMS stabilization is as in the linear case using a v/ term
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Taylor Bar: Pressure

@ Length/Radius: 3.24/0.32cm, density: 8930

@ Elastic-plastic material (E=117.0e9, v=0.35, 0,=0.4€9, H=0.1€9)
@ Fixed end, initial uniform x-velocity (smoothed)

@ Zero normal velocity at wall, initial velocity 227
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Taylor Bar: Force and Length History

@ Convergence of reaction force (x-component) and final bar length:
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Bending Beam: Pressure

@ Length/Width: 6/1.4m, density: 1.1e3
@ Neo-Hookian material (E=1.7e7, v=0.45)

@ Fixed end, initial uniform x-velocity (smoothed)

t=20.5
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Bending Beam: Force History

@ We run on four uniform (unstructured) tet meshes (mg-m3)
@ Convergence of reaction forces (x, y) at fixed surface:
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Bending Beam: Position/Velocity History

@ Convergence of average position/velocity (x) at top surface:
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Billet in Compression:

@ Length/Radius: 1.5/1.0cm, density: 1e5

@ Elastic-plastic material (E=384.62e9, 1=0.423, 0,=1€9, H=3€9)
@ Quasistatic approx. using dynamics (fictitious density, velocity)

@ Top: dirichlet uniform velocity, bottom: zero normal displacement
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Pressure contours for three meshes (25% compression)
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Billet in Compression: Force History

@ Convergence of reaction forces (x, z) at moving surface (top):
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Bar in Tension: Pressure
@ Length/Radius: 5.33/0.641cm, density: 1e5

@ Elastic-plastic material (E=80.2e9, »=0.29, 0,=0.45€9, H=0.13e9)

@ Quasistatic approx. using dynamics (fictitious density, velocity)

@ Top: zero normal displacement, bottom: dirichlet uniform velocity
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Bar in Tension: Force History

@ Convergence of reaction forces (y, z) at moving surface (bottom):
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Summary and Ongoing Work

@ Current status
» Finite deformation solid mechanics capability for tet meshes
» Method is stable and accurate (based on VMS)
» Compatible with VMS-based nodal hydrocode (we have a separate
fluid/solid coupling module)
@ Ongoing work
Additional formal code verification
Performance improvements
Comparisons with hex-based solid mechanics codes
Publications on solids and fluid/solid coupling
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