SAND2011-3182C

Application Characteristics and Performance on a Cray XE6

Courtenay T. Vaughan,
Sandia National Laboratories'

ABSTRACT: In this paper, we will explore the performance of two applications on a
Cray XE6 and their performance improvement from previous machines, including the
XT5 and the XT6. These two applications show different scaling effects as we go from
machine to machine and we will explore the differences in the applications to explain
these differences. We will use profiling and other tools to better understand resource
contention within and between nodes and how that changes with the evolution of the
machines with changes in processors and network.

KEYWORDS: XE6, XTS5, XT6, application performance

1. Introduction

The newest capability machine for the Advanced
Simulation and Computing (ASC) Campaign is a Cray
XE6 called Cielo [1]. The machine currently consists of
6654 compute nodes which are dual-socket oct-core
AMD Magny-Cours nodes clocked at 2.4 GHz connected
with Cray’s Gemini interconnect in a 3D torus, for a total
of 106464 cores capable of 1.02 PFLOPS. Each node is
connected to 32 GB of 1.333 GHz DDR3 memory. The
final system, to be delivered later this year will have 8944
compute nodes and be rated at 1.37 PFLOPS. For this
study, we also utilized some smaller XE6 systems which
were purchased with Cielo and utilize the same node
architecture.

For a short period of time, Cielo and the smaller XE6
machines were configured as XT6 machines which use
the XE6 nodes with a SeaStar 2.2 interconnect. Using
results collected on the machines in this configuration
allows us to isolate the effects of the network and the
node architecture. Unfortunately, the machines did not
exist for a long enough time period to gather all of the
data that we would have liked for this paper.

Sandia also has an XT5 with 160 compute nodes.
These nodes are dual-socket with 6 core AMD Istanbul
processors clocked at 2.4 GHz with 32 GB of 800 MHz
DDR2 memory per node. The XTS5 is configured as a 6 x
4 x 8 3D torus and uses SeaStar 2.2 for the interconnect.
The XTS5 is running CLE 2.2.41 and the applications were
compiled with PGI version 9.0.2.

The XTS5 node consists of two 6 core processors.
Each processor is its own NUMA region and is connected
to 16 GB of DDR2 memory. The node for the XT6 and
XE6 consists of two oct-core processors. Each oct-core
processor is divided into two 4 core NUMA regions with
each NUMA region connected to 8 GB of 1.333 GHz
DDR3 memory. In [2], we examined the effects of
memory contention while using varying number of cores
per NUMA region on the XTS5 and showed that that
contention can have a large effect on code performance.
Dividing the oct-core processor into two NUMA regions,
each with their own path to memory, has the effect of
limiting that performance derogation.

The other architectural difference moving from the
XT6 to the XE6 is the change from the SeaStar
interconnect to the Gemini interconnect. Where the
SeaStar interconnect has one NIC per node, each Gemini
chip serves two nodes. The network still has the same
number of logical connections in each dimension of the
machine with every other hop in the Y direction taking
place within the Gemini. The effect of the Gemini
interconnect is that the bandwidth between nodes is
increased some, while the injection bandwidth is
increased by an order of magnitude [3].

2. Applications

In this paper, we have chosen to use two Sandia
codes, CTH and PRONTO, due to their differences in the
way these applications run on the different machines.

! This research was sponsored by Sandia National Laboratories, Albuquerque, New Mexico 87185, and Livermore, California
94550. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security

Administration under Contract DE-AC04-94-A1.85000.

CUG 2011 Proceedings 1 of 5

A. CTH

CTH is an explicit, three-dimensional, multimaterial
shock hydrodynamics code which has been developed at
Sandia for serial and parallel computers. It is designed to
model a large variety of two- and three-dimensional
problems involving high-speed hydrodynamic flow and
the dynamic deformation of solid materials, and includes
several equations of state and material strength models
[4]. CTH is written mostly in FORTRAN 77 with a little
bit of C code.

The numerical algorithms used in CTH solve the
equations of mass, momentum, and energy in an Eulerian
finite difference formulation on a three-dimensional
Cartesian mesh. CTH can be used in either a flat mesh
mode where the faces of adjacent cells are coincident or
in a mode with Automatic Mesh Refinement (AMR)
where the mesh can be finer in areas of the problem
where there is more activityy CTH uses message
aggregation during communication phases which results
in a few large messages for each communication phase.

For this study we will be using the code in a flat
mesh mode and using two problems. The first is a
shaped-charge problem (Figure 1) and the second is a
meso-scale impact problem which is better load balanced.
Both problems scale with the number of processors used.

A B@@

| | | |
Figure 1. Shaped-charge problem.

Figure 2 shows the communication matrix for CTH
on 64 cores for the shaped-charge, on the left, and the
meso-scale problem, on the right. The difference between
the two diagrams is that the shaped-charge problem is
divided onto the processors in a 2 by 8 by 4 grid of
processors, while the meso-scale problem is divided onto
the processors in a 2 by 4 by 8 grid of processors.

Destnaton _ Destination

Figure 2. Communication matrices for CTH

Figure 3 shows the communication trace from
CrayPat for one timestep for CTH on 64 cores. The top
trace is from the shaped-charge problem while the bottom
trace is from the meso-scale problem.

i

I3
Figure 3. Communication traces for one timestep of CTH

In these figures, black is point to point
communication, red is synchronization time waiting for
collectives or for communication to finish, green is send,
blue is receive, and gray is computation. These figures
show that both problems behave similarly overall, but
have different amounts of synchronization time which
occur at different points in the timestep. CTH has several
points in a timestep where boundary information is
aggregated and exchanged with up to six neighbors in the
grid of processors. For the shaped-charge problem, these
messages average 5.2 MB and for the meso-scale
problem, these messages average 10.4 MB. Toward the
end of the timestep, the shaped charge problem shows
some additional communication that is a result of the high
explosive calculations.

B. PRONTO

PRONTO is an explicit Lagrangian, finite element
code developed for modeling transient solid mechanics
problems involving large deformations and contact which
was developed at Sandia for parallel and serial computers
[5]. The problem is statically partitioned for the finite
element portion of the code while the parallel contact
algorithm utilizes a second dynamically created
decomposition of the surface of the problem to resolve the
contact. Both phases of the computation use lots of small
to medium sized messages for communication. PRONTO
is written in mostly FORTRAN 90 with the parallel
contact algorithm being written in C.

For this study, we are using two problems. The first
is the “walls” problem in which two sets of two brick
walls each collide. The combination of the brick size and
number of bricks is chosen such that none of the bricks is

CUG 2011 Proceedings 2 of 5

divided when the problem is decomposed onto the
processors. This results in a problem in which
communication is not required during the finite element
portion of the computation, but is during the contact
portion of the computation. Figure 4 shows the initial
configuration of the problem (the one visible wall
obscures the other three walls) with the different colors
representing the different processors which own each
brick and the portion of the problem that a processor has
with the blue bricks in one for the front two walls
traveling to the back and the pink bricks in the back
traveling to the front. The figure is illustrated with 64
cores, but with a reduced number of blocks per processor
so it would be easier to show what is happening. This
problem is engineered to exercise the contact algorithm.

Figure 4. Walls problem and one processor’s portion

The second problem is the “can crush” problem in
which a cylinder is crushed by a block and is illustrated in
Figure 5. This is a more balanced problem in that there is
communication for both the finite element and contact
phases of the computation and the amount of contact is
more representative of typical problems for PRONTO.

T

Figure S. Can crush problem.

Figure 6 shows the communication matrices for
PRONTO on 64 cores for these two problems. The
matrix on the left is for the walls problem, while the one
on the right is for the can crush problem. The matrix for
the walls problem illustrates that every processor has to
communicate with almost every other processor due to the
fact that a processors portion of the problem is spread out
throughout the domain. The matrix for the can crush
problem is more sparse since the structural analysis
portion of the problem is more constrained. This matrix

will change slightly during the calculation as the
decomposition for the contact algorithm changes.

Destination Destination

-
=

EII . iy m“ _ ..E

Figure 6. PRONTO communication matrices

Figure 7 shows communication traces from CrayPat
for both problems on 64 cores. The top trace shows one
timestep for the walls problem, while the bottom trace is
one timestep from the can crush problem. These traces
show some limitations of CrayPat by the fact that the
synchronization points are not lined up for all of the
processors. The communication pattern for the contact
algorithm is on the left side of both traces, while the
communication for the finite element portion of the code
is on the right side. That communication is missing for
the walls problem since it does no communication for this
step.

Figure 7. Communication traces for PRONTO

3. Results for XTS5, XT6, and XE6

Figure 8 shows a comparison of CTH times running
both the shaped-charge (sc) and the meso-scale (meso)
problem running for 100 timesteps on the XT3, the XT6,
and the XE6.

CUG 2011 Proceedings 3 of 5

3000

2500

2000

Time

1500

-#-sc XT5
—=sc XT5 -S4
—+sc XT6
—-sc XE6
——meso XT5
—+-meso XT5 -S4/
— meso XT6
—— meso XE6

1000

500

1 2 4 8 16 32 64 128 256 512 1024
Number of Cores

Figure 8. CTH on XTS5, XT6, and XE6

Overall, CTH shows up to a 30% performance
increase (decrease in time) going from the XT3 using all
the cores on a node to the XE6 which is also using all of
the cores on a node. The performance on the XT6 is
similar to the performance on the XTS5 using only 4 cores
per NUMA region. The XT6 has better performance on
both problems up to 64 cores and for 128 or more cores,
the XTS5 using 4 core per NUMA region has better
performance with its performance coming close to that of
the XE6. As the number of cores increase, the largest
performance difference seems to be between the XTS5 and
the XTS5 using only 4 cores per NUMA region. A large
portion of the difference is the memory contention within
the processors and a smaller portion of that difference is
contention for the NIC. The difference between the XT6
and the XE6 seems to be growing, which shows the
difference between the SeaStar and Gemini interconnect.
The differences between the XTS5 using 4 cores per
NUMA region and the XT6 as the number of cores
increases shows the effect of contention for the network
bandwidth becoming a larger effect than the slightly
better performance within a NUMA region due to better
memory bandwidth.

Overall, CTH shows some improvement going from
the XT5 to the XE6 as a result of better node architecture,
fewer cores per NUMA region, and some network
bandwidth improvement from moving from the SeaStar to
the Gemini network.

Figure 9 shows a comparison of PRONTO running
the walls problem (walls) and can crush (can) on the XTS5,
XT6, and XE6. The timing for the walls problem is for
one timestep, while that of the can crush problem is for 5
timesteps. The can crush problem runs faster than the
walls problem since the problem is somewhat smaller for
a given number of cores, the contact calculation is much
simpler, and the communication requirements are less per
timestep.

5
—=—walls XT5
— walls XT5 -S4
— walls XT6 -SN2|
20 ——walls XT6

1= walls XE6
—-can XT5
——can XT5 -S4
—— can XE6

05 —

0.0
16 32 64 128 256

Number of Cores
Figure 9. PRONTO on XTS5, XT6, and XE6

For the walls problem, the XE6 shows up to a 38%
performance increase (decrease in run time) from the XT5
to the XE6 and, unlike CTH, shows up to a 25%
performance increase from the XTS5 using 4 cores per
NUMA region. The results for the XT6 show that for 16
cores (1 node) that performance is similar to the XE6, but
for 64 cores, the XT6 performance is worse than that of
the XTS5 using 4 cores per NUMA region, while if we
only use two NUMA regions per node with XT6, then its
performance is similar to that of the XTS5 using 4 cores
per NUMA region. The can crush problem shows less but
a more consistent performance advantage for the XE6
over the XTS5, while the performance of the XT5 using 4
core per NUMA region seems to be getting further from
that of the XE6 as the number of cores increases.

While PRONTO shows some improvement from the
node architecture changes, it seems to show a greater
improvement from the move from the SeaStar to the
Gemini network.

4. Interpretation of Results

Both of the codes that we ran on the XTS5 showed
memory contention when using all 6 cores per NUMA
region. Both codes showed about a 20% performance
improvement by using 4 cores per NUMA region.

To look at the influence of the NIC and to explore
how the behaviors of the codes differ, we compiled figure
10, which captures some of the communication
differences between the two codes. The number of
messages is messages per minute, while the amount of
data transferred is in KB per second to allow both to be
plotted on the same graph.

CUG 2011 Proceedings 4 of 5

70000 13e4 19e4

W XT5 - CTH - shaped
60000 @ XT5 - CTH - meso

W XT5 - P3D - walls

W XT5 - P3D - can crush
W XE6 - CTH - shaped
B XE6 - CTH - meso
40000 OXES6 - P3D - walls

M XE6 - P3D - can crush

50000

te

nu

30000

Number/m

20000

10000 ﬂ
0 [= |

<16B 16B - 256B 256B - 4KB 4KB - 64KB 64KB - 1MB 1MB - total KB/sec
16MB

Size
Figure 10. Communication behavior of CTH and PRONTO

CTH sends a few large messages per timestep, which
results in the total number of messages being low, but the
total amount of information transferred is large.
PRONTO, on the other hand, sends quite a few more
messages, but the total amount of information transferred
is less than half of the amount the CTH transfers. From
the run-time communication traces, both codes tend to use
network resources in a contentious manner, with CTH
making use of the bandwidth by having all of the
processors trying to send large messages at the same time,
while PRONTO has all of the processors sending lots of
messages at the same time.

This helps to explain the performance differences that
we see with CTH and PRONTO over these machines.
For CTH, bandwidth is important, so as the number of
cores gets larger and a larger percentage of message
traffic is over the network, the XTS5 using 4 cores per
NUMA region gets competitive with the XE6 since the
XTS5 is using more NICs. PRONTO utilizes the increased
message injection rate of the Gemini by sending lots of
small messages, and as the number of cores increase, the
performance difference between the XTS5 and the XE6
gets larger.

5. Conclusions and Future Work

We ran CTH and PRONTO on a couple of problems
each on an XT5, an XT6, and an XE6. Both codes
showed memory contention within a NUMA region on
the XT5, but running with 4 cores per NUMA region
brought that inline with the contention that we see on the
XT6 and XE6. Once we did that, CTH and PRONTO
showed different behavior on the machines. With its
communication bandwidth requirement, CTH showed
little difference between the machines, while PRONTO
with its use of lots of small messages showed more
improvement moving to the XE6 with the Gemini
interconnect.

In the future, we would like to be able to run these
codes on larger numbers of cores to see if our
observations continue to hold. We are also writing a
mini-app to model the communication requirements of
CTH and see if we can use the increased message rate to
speed up the communications in that code.

About the Author

Courtenay Vaughan is a Senior Member of Technical
Staff at Sandia National Laboratories. He can be reached
at Sandia National Laboratories, P. O. Box 5800, MS
1319, Albuquerque, New Mexico 87185, E-Mail:
ctvaugh@sandia.gov.

References

L. Sudié) Dosanjh and John Morrison, “An Alliance
for Computing at the Extreme Scale”, Cray User
Group Conference, May 2010.

2. Courtenay T. Vaughan and Douglas W. Doerfler,
“Analyzing Multicore Characteristics for a Suite
of Applications on an XT5 System”, Cray User
Group Conference, May 2010.

3. Courtenay Vaughan, Mahesh Rajan, Richard
Barrett, Douglas Doerfler, and Kevin Pedretti,
“Investigating the Impact of the Cielo Cray XE6
Architecture on Scientific Application Codes”,
Workshog on Large-Scale Parallel Processing at
the 25" IEEE International Parallel and
2Déit1ributed Processing Symposium (IPDPS), May

4. E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V.
Farnsworth, G. 1. Kerley, J. M. McGlaun, S. V.
Petney, S. A. Silling, P. A. Taylor, L. Yarrington,
“CTH: A Software Family for Multi-Dimensiona
Shock Physics Analysis,” Proceedings, 19"
International Symposium on Shock Waves 1,
%17519f£)(Université dlz: Provence, Provence, France)

5. S. W. Attaway, B. A. Hendrickson, S. J.
Plimpton, D. R. Gardner, C. T. Vaughan, K. H.
Brown, and M. W. Heinstein, “A Parallel Contact
Detection Algorithm for Transient Solid
Dynamics Simulation Usin§ PRONTO3D?”,
(Cio9n91)utational Mechanics, Vol. 22, pp. 143-159

CUG 2011 Proceedings 5 of 5

mailto:ctvaugh@sandia.gov

