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Application Characteristics and Performance on a Cray XE6
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ABSTRACT: In this paper, we will explore the performance of two applications on a 
Cray XE6 and their performance improvement from previous machines, including the 
XT5 and the XT6.  These two applications show different scaling effects as we go from 
machine to machine and we will explore the differences in the applications to explain 
these differences.  We will use profiling and other tools to better understand resource 
contention within and between nodes and how that changes with the evolution of the 
machines with changes in processors and network.
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1. Introduction

The newest capability machine for the Advanced 
Simulation and Computing (ASC) Campaign is a Cray 
XE6 called Cielo [1].  The machine currently consists of 
6654 compute nodes which are dual-socket oct-core 
AMD Magny-Cours nodes clocked at 2.4 GHz connected 
with Cray’s Gemini interconnect in a 3D torus, for a total 
of 106464 cores capable of 1.02 PFLOPS.  Each node is 
connected to 32 GB of 1.333 GHz DDR3 memory.  The 
final system, to be delivered later this year will have 8944 
compute nodes and be rated at 1.37 PFLOPS.  For this 
study, we also utilized some smaller XE6 systems which 
were purchased with Cielo and utilize the same node 
architecture.

For a short period of time, Cielo and the smaller XE6 
machines were configured as XT6 machines which use 
the XE6 nodes with a SeaStar 2.2 interconnect.  Using 
results collected on the machines in this configuration 
allows us to isolate the effects of the network and the 
node architecture.  Unfortunately, the machines did not 
exist for a long enough time period to gather all of the 
data that we would have liked for this paper.

Sandia also has an XT5 with 160 compute nodes.  
These nodes are dual-socket with 6 core AMD Istanbul 
processors clocked at 2.4 GHz with 32 GB of 800 MHz 
DDR2 memory per node.  The XT5 is configured as a 6 x 
4 x 8 3D torus and uses SeaStar 2.2 for the interconnect.  
The XT5 is running CLE 2.2.41 and the applications were 
compiled with PGI version 9.0.2.

The XT5 node consists of two 6 core processors.  
Each processor is its own NUMA region and is connected 
to 16 GB of DDR2 memory.  The node for the XT6 and 
XE6 consists of two oct-core processors.  Each oct-core 
processor is divided into two 4 core NUMA regions with 
each NUMA region connected to 8 GB of 1.333 GHz 
DDR3 memory.  In [2], we examined the effects of 
memory contention while using varying number of cores 
per NUMA region on the XT5 and showed that that 
contention can have a large effect on code performance.  
Dividing the oct-core processor into two NUMA regions, 
each with their own path to memory, has the effect of 
limiting that performance derogation.

The other architectural difference moving from the 
XT6 to the XE6 is the change from the SeaStar 
interconnect to the Gemini interconnect.  Where the 
SeaStar interconnect has one NIC per node, each Gemini 
chip serves two nodes.  The network still has the same 
number of logical connections in each dimension of the 
machine with every other hop in the Y direction taking 
place within the Gemini.  The effect of the Gemini 
interconnect is that the bandwidth between nodes is 
increased some, while the injection bandwidth is 
increased by an order of magnitude [3].

2. Applications

In this paper, we have chosen to use two Sandia 
codes, CTH and PRONTO, due to their differences in the 
way these applications run on the different machines.
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A. CTH

CTH is an explicit, three-dimensional, multimaterial 
shock hydrodynamics code which has been developed at 
Sandia for serial and parallel computers.  It is designed to 
model a large variety of two- and three-dimensional 
problems involving high-speed hydrodynamic flow and 
the dynamic deformation of solid materials, and includes 
several equations of state and material strength models 
[4].  CTH is written mostly in FORTRAN 77 with a little 
bit of C code.

The numerical algorithms used in CTH solve the 
equations of mass, momentum, and energy in an Eulerian 
finite difference formulation on a three-dimensional 
Cartesian mesh.  CTH can be used in either a flat mesh 
mode where the faces of adjacent cells are coincident or 
in a mode with Automatic Mesh Refinement (AMR) 
where the mesh can be finer in areas of the problem 
where there is more activity.  CTH uses message 
aggregation during communication phases which results 
in a few large messages for each communication phase.

For this study we will be using the code in a flat 
mesh mode and using two problems.  The first is a 
shaped-charge problem (Figure 1) and the second is a 
meso-scale impact problem which is better load balanced.  
Both problems scale with the number of processors used.

Figure 1.  Shaped-charge problem.

Figure 2 shows the communication matrix for CTH 
on 64 cores for the shaped-charge, on the left, and the 
meso-scale problem, on the right.  The difference between 
the two diagrams is that the shaped-charge problem is 
divided onto the processors in a 2 by 8 by 4 grid of 
processors, while the meso-scale problem is divided onto 
the processors in a 2 by 4 by 8 grid of processors.

Figure 2.  Communication matrices for CTH

Figure 3 shows the communication trace from 
CrayPat for one timestep for CTH on 64 cores.  The top 
trace is from the shaped-charge problem while the bottom 
trace is from the meso-scale problem.

Figure 3.  Communication traces for one timestep of CTH

In these figures, black is point to point 
communication, red is synchronization time waiting for 
collectives or for communication to finish, green is send, 
blue is receive, and gray is computation.  These figures 
show that both problems behave similarly overall, but 
have different amounts of synchronization time which 
occur at different points in the timestep.  CTH has several 
points in a timestep where boundary information is 
aggregated and exchanged with up to six neighbors in the 
grid of processors.  For the shaped-charge problem, these 
messages average 5.2 MB and for the meso-scale 
problem, these messages average 10.4 MB.  Toward the 
end of the timestep, the shaped charge problem shows 
some additional communication that is a result of the high 
explosive calculations.

B. PRONTO

PRONTO is an explicit Lagrangian, finite element 
code developed for modeling transient solid mechanics 
problems involving large deformations and contact which 
was developed at Sandia for parallel and serial computers 
[5].  The problem is statically partitioned for the finite 
element portion of the code while the parallel contact 
algorithm utilizes a second dynamically created 
decomposition of the surface of the problem to resolve the 
contact.  Both phases of the computation use lots of small 
to medium sized messages for communication.  PRONTO
is written in mostly FORTRAN 90 with the parallel 
contact algorithm being written in C.

For this study, we are using two problems.  The first 
is the “walls” problem in which two sets of two brick 
walls each collide.  The combination of the brick size and 
number of bricks is chosen such that none of the bricks is 
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divided when the problem is decomposed onto the 
processors.  This results in a problem in which 
communication is not required during the finite element 
portion of the computation, but is during the contact 
portion of the computation.  Figure 4 shows the initial 
configuration of the problem (the one visible wall 
obscures the other three walls) with the different colors 
representing the different processors which own each 
brick and the portion of the problem that a processor has
with the blue bricks in one for the front two walls 
traveling to the back and the pink bricks in the back 
traveling to the front.  The figure is illustrated with 64 
cores, but with a reduced number of blocks per processor 
so it would be easier to show what is happening.  This 
problem is engineered to exercise the contact algorithm.

Figure 4.  Walls problem and one processor’s portion

The second problem is the “can crush” problem in 
which a cylinder is crushed by a block and is illustrated in 
Figure 5.  This is a more balanced problem in that there is 
communication for both the finite element and contact 
phases of the computation and the amount of contact is 
more representative of typical problems for PRONTO.

Figure 5.  Can crush problem.

Figure 6 shows the communication matrices for 
PRONTO on 64 cores for these two problems.  The 
matrix on the left is for the walls problem, while the one 
on the right is for the can crush problem.  The matrix for 
the walls problem illustrates that every processor has to 
communicate with almost every other processor due to the 
fact that a processors portion of the problem is spread out 
throughout the domain.  The matrix for the can crush 
problem is more sparse since the structural analysis 
portion of the problem is more constrained.  This matrix 

will change slightly during the calculation as the 
decomposition for the contact algorithm changes.

Figure 6.  PRONTO communication matrices

Figure 7 shows communication traces from CrayPat 
for both problems on 64 cores.  The top trace shows one 
timestep for the walls problem, while the bottom trace is 
one timestep from the can crush problem.  These traces 
show some limitations of CrayPat by the fact that the 
synchronization points are not lined up for all of the 
processors.  The communication pattern for the contact 
algorithm is on the left side of both traces, while the 
communication for the finite element portion of the code 
is on the right side.  That communication is missing for 
the walls problem since it does no communication for this 
step.

Figure 7.  Communication traces for PRONTO

3. Results for XT5, XT6, and XE6

Figure 8 shows a comparison of CTH times running 
both the shaped-charge (sc) and the meso-scale (meso) 
problem running for 100 timesteps on the XT5, the XT6, 
and the XE6.
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Figure 8.  CTH on XT5, XT6, and XE6

Overall, CTH shows up to a 30% performance 
increase (decrease in time) going from the XT5 using all 
the cores on a node to the XE6 which is also using all of 
the cores on a node.  The performance on the XT6 is 
similar to the performance on the XT5 using only 4 cores 
per NUMA region.  The XT6 has better performance on 
both problems up to 64 cores and for 128 or more cores, 
the XT5 using 4 core per NUMA region has better 
performance with its performance coming close to that of 
the XE6.  As the number of cores increase, the largest 
performance difference seems to be between the XT5 and 
the XT5 using only 4 cores per NUMA region.  A large 
portion of the difference is the memory contention within 
the processors and a smaller portion of that difference is 
contention for the NIC. The difference between the XT6 
and the XE6 seems to be growing, which shows the 
difference between the SeaStar and Gemini interconnect.  
The differences between the XT5 using 4 cores per 
NUMA region and the XT6 as the number of cores 
increases shows the effect of contention for the network 
bandwidth becoming a larger effect than the slightly 
better performance within a NUMA region due to better 
memory bandwidth.

Overall, CTH shows some improvement going from 
the XT5 to the XE6 as a result of better node architecture, 
fewer cores per NUMA region, and some network 
bandwidth improvement from moving from the SeaStar to 
the Gemini network.

Figure 9 shows a comparison of PRONTO running 
the walls problem (walls) and can crush (can) on the XT5, 
XT6, and XE6.  The timing for the walls problem is for 
one timestep, while that of the can crush problem is for 5 
timesteps.  The can crush problem runs faster than the 
walls problem since the problem is somewhat smaller for 
a given number of cores, the contact calculation is much 
simpler, and the communication requirements are less per 
timestep.
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Figure 9.  PRONTO on XT5, XT6, and XE6

For the walls problem, the XE6 shows up to a 38% 
performance increase (decrease in run time) from the XT5 
to the XE6 and, unlike CTH, shows up to a 25% 
performance increase from the XT5 using 4 cores per 
NUMA region.  The results for the XT6 show that for 16 
cores (1 node) that performance is similar to the XE6, but 
for 64 cores, the XT6 performance is worse than that of 
the XT5 using 4 cores per NUMA region, while if we 
only use two NUMA regions per node with XT6, then its 
performance is similar to that of the XT5 using 4 cores 
per NUMA region.  The can crush problem shows less but 
a more consistent performance advantage for the XE6 
over the XT5, while the performance of the XT5 using 4 
core per NUMA region seems to be getting further from 
that of the XE6 as the number of cores increases.

While PRONTO shows some improvement from the 
node architecture changes, it seems to show a greater 
improvement from the move from the SeaStar to the 
Gemini network.

4. Interpretation of Results

Both of the codes that we ran on the XT5 showed 
memory contention when using all 6 cores per NUMA 
region.  Both codes showed about a 20% performance 
improvement by using 4 cores per NUMA region.

To look at the influence of the NIC and to explore 
how the behaviors of the codes differ, we compiled figure 
10, which captures some of the communication 
differences between the two codes.  The number of 
messages is messages per minute, while the amount of 
data transferred is in KB per second to allow both to be 
plotted on the same graph.
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Figure 10.  Communication behavior of CTH and PRONTO

CTH sends a few large messages per timestep, which 
results in the total number of messages being low, but the 
total amount of information transferred is large.  
PRONTO, on the other hand, sends quite a few more 
messages, but the total amount of information transferred 
is less than half of the amount the CTH transfers.  From 
the run-time communication traces, both codes tend to use 
network resources in a contentious manner, with CTH 
making use of the bandwidth by having all of the 
processors trying to send large messages at the same time, 
while PRONTO has all of the processors sending lots of 
messages at the same time.

This helps to explain the performance differences that 
we see with CTH and PRONTO over these machines.  
For CTH, bandwidth is important, so as the number of 
cores gets larger and a larger percentage of message 
traffic is over the network, the XT5 using 4 cores per 
NUMA region gets competitive with the XE6 since the 
XT5 is using more NICs.  PRONTO utilizes the increased 
message injection rate of the Gemini by sending lots of 
small messages, and as the number of cores increase, the 
performance difference between the XT5 and the XE6 
gets larger.

5. Conclusions and Future Work

We ran CTH and PRONTO on a couple of problems 
each on an XT5, an XT6, and an XE6.  Both codes 
showed memory contention within a NUMA region on 
the XT5, but running with 4 cores per NUMA region 
brought that inline with the contention that we see on the 
XT6 and XE6.  Once we did that, CTH and PRONTO 
showed different behavior on the machines.  With its 
communication bandwidth requirement, CTH showed 
little difference between the machines, while PRONTO 
with its use of lots of small messages showed more 
improvement moving to the XE6 with the Gemini 
interconnect.

In the future, we would like to be able to run these 
codes on larger numbers of cores to see if our 
observations continue to hold.  We are also writing a 
mini-app to model the communication requirements of 
CTH and see if we can use the increased message rate to 
speed up the communications in that code.
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