
Motivation: The changing landscape of high-performance computing 
architectures requires simultaneous exploration of both the hardware and software 
design space, a process referred to as co-design. The Structural Simulation Toolkit 
(SST) enables co-design of extreme-scale architectures by allowing simulation of 
diverse aspects of hardware and software. The macroscale components of SST aim 
to  simulate full scale machines using a coarse-grained simulation approach. The 
parallel machine is represented by models which are used to estimate the 
performance of processing and network components. Applications can be 
represented by skeletons that replicate the control flow and communication 
behavior of an actual application without the cost of real message passing or 
heavyweight computation. The behavior of existing Message Passing Interface 
(MPI) applications can be captured using the DUMPI library distributed as a part of 
SST/macro. DUMPI traces can be replayed in SST/macro to simulate a machine 
different from that used to collect the original trace. SST/macro can be easily be 
extended with additional network models, trace file formats, and more detailed 
processor models.

Case Study: Systolic Matrix Multiplication
We base our systolic matrix multiply skeleton application on Cannon's 2D algorithm. 
Given two n × n matrices, A and B, we wish to compute elements Cij = AikBkjk∑ . 

Assigning the nodes to a logical 2D mesh, the A and B matrices are partitioned into 
one block per processor as illustrated in the figure to 
the left. Each A block is shifted left by its row number 
and each B block is shifted up by its column number 
(wrapping around in both dimensions) so that the 
initial block locations are as in the figure to the right. 
The algorithm iterates nblock −1 times, at each step 
using non-blocking send/receive calls to simulate 
shifting its current A block one node to the left and its 
current B block one node up. Simulation of the 
overlapped multiplication of the current blocks with 
accumulation of the result into the local C block is 
performed. Upon completion of the nblock −1 

iterations, a  compute call simulates 
the multiplication of the blocks received during the final 
loop iteration, completing simulation of the algorithm. 
The SST/macro skeleton code performing this operation 
is shown below.

The MPI-based matrix multiply skeleton application was 
used to simulate the parallel efficiency of the skeleton 
algorithm for a hypothetical extreme-scale architecture. 
The machine parameters used are 10 GByte/sec 
internode bandwidth, 1 μs internode latency, 10 GByte/s 
intranode bandwidth, 10 ns intranode latency, a 4 Gop/
sec fused multiply and add rate for each core, and 250 cores per MPI rank. The 
skeleton application is organized so that a single MPI rank runs on each node, and 
multi-threading is used for parallelism on the nodes.  Since we focus on the 
communications-related performance and programmability, we do not explicitly 
model each thread on each node. Each node starts with a single matrix block of 
size 10,000 on each side. The degraded runs include a single node running at half 
of the computation rate as the other nodes.  For the fat-tree and crossbar networks, 
the systolic shifts in the initial redistribution phase are replaced by direct sends to 
the target nodes. We will refer to this algorithm as DS.
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Results are shown in the figure to the right. Moving from a single node to multiple nodes, we 
see a dip in performance due to the necessity of moving data through the network. As the 
number of nodes increases, the crossbar and fat-tree outperform the torus because they do 
not systolically form the initial data distribution. The fat-tree is at times slightly slower than the 
crossbar, because it uses static routes and some congestion is possible.  For the degraded 
cases, performance is roughly halved because the systolic nature of the algorithm forces all 
nodes to wait for the degraded node at each synchronization point.

  // Set up the instructions object to tell the processor model
  // how many fused multiply-add instructions each compute call executes
  boost::shared_ptr<sstmac::eventdata> instructions =
    sstmac::eventdata::construct();
  instructions->set_event("FMA",blockrowsize*blockcolsize*blocklnksize);
  // Iterate over number of remote row and column blocks
  for (int i=0; i<nblock-1; i++) {
    std::vector<sstmac::mpiapi::mpirequest_t> reqs;
    // Begin non-blocking left shift of A blocks
    sstmac::mpiapi::mpirequest_t req;
    mpi()->isend(blocksize, sstmac::mpitype::mpi_double,
                 sstmac::mpiid(myleft), sstmac::mpitag(0), world, req);
    reqs.push_back(req);
    mpi()->irecv(blocksize, sstmac::mpitype::mpi_double,
                 sstmac::mpiid(myright), sstmac::mpitag(0), world, req);
    reqs.push_back(req);
    // Begin non-blocking down shift of B blocks
    sstmac::mpiapi::mpirequest_t req;
    mpi()->isend(blocksize, sstmac::mpitype::mpi_double,
                 sstmac::mpiid(myup), sstmac::mpitag(0), world, req);
    reqs.push_back(req);
    mpi()->irecv(blocksize, sstmac::mpitype::mpi_double,
                 sstmac::mpiid(mydown), sstmac::mpitag(0), world, req);
    reqs.push_back(req);
    // Simulate computation with current blocks
    compute_api()->compute(instructions);
    std::vector<sstmac::mpiapi::const_mpistatus_t> statuses;
    // Wait for data needed for next iteration
    mpi()->waitall(reqs, statuses);
  }
  // Simulate computation with blocks received during last loop iteration
  compute_api()->compute(instructions);

A code fragment implementing a skeleton program for a systolic matrix multiplication (restricted to square blocks).

For comparison, the torus results were also obtained using the direct send (DS) 
algorithm, and these are also shown in the figure. For the machine and problem 
parameters in our study, DS was faster than using a systolic startup algorithm.  
The torus is still slower than the fat-tree and crossbar networks due to network 
congestion in forming the initial block distribution.

How can the CSC Community Benefit from SST/Macro? 
• Algorithms and models for load balancing, task and communication scheduling, 
mapping of tasks to processors, design of interconnects and associated 
communication algorithms has been at the heart of combinatorial computing. 

•  Evaluating the effectiveness of these algorithms however, has been 
troublesome, since we design algorithms for future machines, and timings of 
existing machines vary widely since external factors  cannot be controlled. 

•  We measure our success in our terms (such as volume of communication,  
number of communicating pairs,  maximum load among all processors, etc.), 
which may limit adoption of our results by the broader scientific computing 
community. 

•   SST/macro offers a platform to evaluate  our proposed techniques:
•  on expected future platforms
• using our own computational resources
• in a controlled environment, where we can observe the effects of our 
proposed improvements without the burden of external factors. 

•  SST/macro  can help us answer questions such as: 
•  What is the best way to model communication load of a system? What are 
the trade-offs among communication volume, number of messages, and  
distribution of communication load among processors, and others? 

•  How should we tailor our load balancing algorithms based on architectural 
trends? 

•   What  will be the new performance bottlenecks in the future architectures 
and how can CSC help overcome these bottlenecks? 

Code Availability 
SST is publicly available. For further information, visit 
http://sst.sandia.gov/using_sstmacro.html 
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Weak scaling parallel efficiency of the systolic matrix matrix algorithm: 1) full 
crossbar network (DS), 2) fat-tree with radix 36 switches (DS), 3) 2D torus 
network, 4) 2D torus network (DS),5) fat-tree with radix 36 switches with a single 
degraded node (DS), 6) 2D torus with a single degraded node. DS designates use 
of the direct send algorithm.
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