
Motivation: The changing landscape of high-performance computing
architectures requires simultaneous exploration of both the hardware and software
design space, a process referred to as co-design. The Structural Simulation Toolkit
(SST) enables co-design of extreme-scale architectures by allowing simulation of
diverse aspects of hardware and software. The macroscale components of SST aim
to simulate full scale machines using a coarse-grained simulation approach. The
parallel machine is represented by models which are used to estimate the
performance of processing and network components. Applications can be
represented by skeletons that replicate the control flow and communication
behavior of an actual application without the cost of real message passing or
heavyweight computation. The behavior of existing Message Passing Interface
(MPI) applications can be captured using the DUMPI library distributed as a part of
SST/macro. DUMPI traces can be replayed in SST/macro to simulate a machine
different from that used to collect the original trace. SST/macro can be easily be
extended with additional network models, trace file formats, and more detailed
processor models.

Case Study: Systolic Matrix Multiplication
We base our systolic matrix multiply skeleton application on Cannon's 2D algorithm.
Given two n × n matrices, A and B, we wish to compute elements Cij = AikBkjk∑ .

Assigning the nodes to a logical 2D mesh, the A and B matrices are partitioned into
one block per processor as illustrated in the figure to
the left. Each A block is shifted left by its row number
and each B block is shifted up by its column number
(wrapping around in both dimensions) so that the
initial block locations are as in the figure to the right.
The algorithm iterates nblock −1 times, at each step
using non-blocking send/receive calls to simulate
shifting its current A block one node to the left and its
current B block one node up. Simulation of the
overlapped multiplication of the current blocks with
accumulation of the result into the local C block is
performed. Upon completion of the nblock −1

iterations, a compute call simulates
the multiplication of the blocks received during the final
loop iteration, completing simulation of the algorithm.
The SST/macro skeleton code performing this operation
is shown below.

The MPI-based matrix multiply skeleton application was
used to simulate the parallel efficiency of the skeleton
algorithm for a hypothetical extreme-scale architecture.
The machine parameters used are 10 GByte/sec
internode bandwidth, 1 μs internode latency, 10 GByte/s
intranode bandwidth, 10 ns intranode latency, a 4 Gop/
sec fused multiply and add rate for each core, and 250 cores per MPI rank. The
skeleton application is organized so that a single MPI rank runs on each node, and
multi-threading is used for parallelism on the nodes. Since we focus on the
communications-related performance and programmability, we do not explicitly
model each thread on each node. Each node starts with a single matrix block of
size 10,000 on each side. The degraded runs include a single node running at half
of the computation rate as the other nodes. For the fat-tree and crossbar networks,
the systolic shifts in the initial redistribution phase are replaced by direct sends to
the target nodes. We will refer to this algorithm as DS.

GIven layout and necessary
shifts for matrix multiplication.

A01,B01A00,B00 A02,B02

A11,B11

A21,B21

A12,B12

A22,B22

A10,B10

A20,B20

Node (0,0) Node (0,1) Node (0,2)

Node (1,0) Node (1,1) Node (1,2)

Node (2,0) Node (2,1) Node (2,2)

Initial block distribution and
block shift pattern.

A01B11A00B00 A02B22

A12B21

A20B01

A10B02

A21B12

A11B10

A22B20

Node (0,0) Node (0,1) Node (0,2)

Node (1,0) Node (1,1) Node (1,2)

Node (2,0) Node (2,1) Node (2,2)

Results are shown in the figure to the right. Moving from a single node to multiple nodes, we
see a dip in performance due to the necessity of moving data through the network. As the
number of nodes increases, the crossbar and fat-tree outperform the torus because they do
not systolically form the initial data distribution. The fat-tree is at times slightly slower than the
crossbar, because it uses static routes and some congestion is possible. For the degraded
cases, performance is roughly halved because the systolic nature of the algorithm forces all
nodes to wait for the degraded node at each synchronization point.

 // Set up the instructions object to tell the processor model
 // how many fused multiply-add instructions each compute call executes
 boost::shared_ptr<sstmac::eventdata> instructions =
 sstmac::eventdata::construct();
 instructions->set_event("FMA",blockrowsize*blockcolsize*blocklnksize);
 // Iterate over number of remote row and column blocks
 for (int i=0; i<nblock-1; i++) {
 std::vector<sstmac::mpiapi::mpirequest_t> reqs;
 // Begin non-blocking left shift of A blocks
 sstmac::mpiapi::mpirequest_t req;
 mpi()->isend(blocksize, sstmac::mpitype::mpi_double,
 sstmac::mpiid(myleft), sstmac::mpitag(0), world, req);
 reqs.push_back(req);
 mpi()->irecv(blocksize, sstmac::mpitype::mpi_double,
 sstmac::mpiid(myright), sstmac::mpitag(0), world, req);
 reqs.push_back(req);
 // Begin non-blocking down shift of B blocks
 sstmac::mpiapi::mpirequest_t req;
 mpi()->isend(blocksize, sstmac::mpitype::mpi_double,
 sstmac::mpiid(myup), sstmac::mpitag(0), world, req);
 reqs.push_back(req);
 mpi()->irecv(blocksize, sstmac::mpitype::mpi_double,
 sstmac::mpiid(mydown), sstmac::mpitag(0), world, req);
 reqs.push_back(req);
 // Simulate computation with current blocks
 compute_api()->compute(instructions);
 std::vector<sstmac::mpiapi::const_mpistatus_t> statuses;
 // Wait for data needed for next iteration
 mpi()->waitall(reqs, statuses);
 }
 // Simulate computation with blocks received during last loop iteration
 compute_api()->compute(instructions);

A code fragment implementing a skeleton program for a systolic matrix multiplication (restricted to square blocks).

For comparison, the torus results were also obtained using the direct send (DS)
algorithm, and these are also shown in the figure. For the machine and problem
parameters in our study, DS was faster than using a systolic startup algorithm.
The torus is still slower than the fat-tree and crossbar networks due to network
congestion in forming the initial block distribution.

How can the CSC Community Benefit from SST/Macro?
• Algorithms and models for load balancing, task and communication scheduling,
mapping of tasks to processors, design of interconnects and associated
communication algorithms has been at the heart of combinatorial computing.

• Evaluating the effectiveness of these algorithms however, has been
troublesome, since we design algorithms for future machines, and timings of
existing machines vary widely since external factors cannot be controlled.

• We measure our success in our terms (such as volume of communication,
number of communicating pairs, maximum load among all processors, etc.),
which may limit adoption of our results by the broader scientific computing
community.

• SST/macro offers a platform to evaluate our proposed techniques:
• on expected future platforms
• using our own computational resources
• in a controlled environment, where we can observe the effects of our
proposed improvements without the burden of external factors.

• SST/macro can help us answer questions such as:
• What is the best way to model communication load of a system? What are
the trade-offs among communication volume, number of messages, and
distribution of communication load among processors, and others?

• How should we tailor our load balancing algorithms based on architectural
trends?

• What will be the new performance bottlenecks in the future architectures
and how can CSC help overcome these bottlenecks?

Code Availability
SST is publicly available. For further information, visit
http://sst.sandia.gov/using_sstmacro.html

Contact Information
Further information is available at http://sst.sandia.gov/
You can also contact
Project leader: Curtis Janssen (cljanss@sandia.gov)
Poster presenter: Ali Pinar (apinar@sandia.gov)

Funding Statement
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energyʼs National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Disclaimer of Liability
This work of authorship was prepared as an account of work sponsored by an agency of the United States
Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do so for United States Government purposes.
Neither Sandia Corporation, the United States Government, nor any agency thereof, nor any of their employees
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by Sandia Corporation, the United States Government, or any agency thereof. The
views and opinions expressed herein do not necessarily state or reflect those of Sandia Corporation, the United
States Government or any agency thereof.

 SST/macro: The Structural Simulation Toolkit macroscale components
for coarse-grained architecture simulation

Curtis Janssen, Helgi Adalsteinsson, Scott Cranford, Damian Dechev, David Evensky, Joe Kenny, Nicole Lemaster, Ali Pinar
Sandia National Laboratories, Livermore, CA

Weak scaling parallel efficiency of the systolic matrix matrix algorithm: 1) full
crossbar network (DS), 2) fat-tree with radix 36 switches (DS), 3) 2D torus
network, 4) 2D torus network (DS),5) fat-tree with radix 36 switches with a single
degraded node (DS), 6) 2D torus with a single degraded node. DS designates use
of the direct send algorithm.

0.00

0.20

0.40

0.60

0.80

1.00

102 103 104 105 106

P
a
ra

lle
l E

ff
ic

ie
n
cy

Number of Cores

Crossbar (DS)
Fat-tree (DS)

Torus
Torus (DS)

Degraded Fat-tree (DS)
Degraded Torus

SAND2011-3179C

http://sst.sandia.gov
http://sst.sandia.gov
mailto:cljanss@sandia.gov
mailto:cljanss@sandia.gov
mailto:apinar@sandia.gov
mailto:apinar@sandia.gov

