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The Mechanics Viewpoint: 
Strain Rate Dependence 
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The Shock Physics Viewpoint: 
Pressure Dependence 

Steinberg-Guinan Strength Model (rate-independent version): 
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•  elastic limit of 6061-T6 aluminum in shock 
experiments suggests minimal rate dependence  

Huang & Asay, JAP 2006 Vogler et al., IJP 2009 

elastic precursor 



Ramp Loading Techniques Can 
Access Rates of 106 s-1 and Above 

laser
beams

LiF
window

aluminum
sample

2.26 mm

polymer
layer

gold
hohlraum

Graded Density Impactor, Barker, 1984 Magnetic Loading - Veloce 

Magnetic Loading - Z Laser-Driven Plasma 

S
m

ith
 e

t a
l.,

 2
00

7 



Results for an Experiment on Veloce 
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•  free surface velocities measured for 
multiple sample thicknesses with VISAR 

•  iterative characteristics analysis used to 
determine uniaxial strain material 
response, σ = σ(ε) 

•  estimate strain rate based on velocity 
measurements - relatively constant for 
2.5 and 3.5 mm 



Comparison to Hydrostat 

Strain  

St
re

ss
 (G

Pa
) 

HEL 
2/3Y 

good:  simple, continuous measurement, compliments other techniques 
bad:  difference of two large numbers, uncertainties in hydrostat 

compare shock state to 
hydrostatic state at same 
density (with appropriate 
thermal corrections) 

Fowles, G. R. (1961). "Shock wave compression of hardened and 
annealed 2024 aluminum," J. Appl. Phys. 32, 1475-1487. 

Y = 1.5(σx(ρ,T)- P(ρ,T)) 

applied to ramp loading:  Al - Barker (1984), Smith et al. (2007) 
 Mo - Reisman et al. (2001) 
 W - Chhabildas & Barker (1988) 
 diamond - Bradley et al. (2009) 



The Issue of Temperature 

•  temperature along the isentrope calculated using 
thermodynamic relationships and the EOS 

•  non-isentropic processes occur in experiments 
(viscosity, strength, etc.) 

•  therefore, must account for irreversible processes 

•  focus on heating due to plastic work 



Calculation of Temperature 
Change Due to Plastic Work 
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some preliminary equations: 
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Calculation of Temperature 
Change Due to Plastic Work (2) 

temperature calculation along the quasi-isentrope: 
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pressure calculation: 

temperature change 
along the isentrope 

heating due to 
plastic work 

Taylor-Quinney factor  
(assumed= 1) 
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Strength Calculations from 
Al Results of Davis (2006) 

•  Experimental data - Davis, J.-P. (2006).  J. Appl. Phys. 99, 103512. 

•  Sesame 3700 EOS - Kerley, G. I. (1987).  Int. J. Impact Eng. 5, 441-449. 
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•  Experimental data - Davis, J.-P. (2006).  J. Appl. Phys. 99, 103512. 

•  Sesame 3700 EOS - Kerley, G. I. (1987).  Int. J. Impact Eng. 5, 441-449. 

Strength Calculations from 
Al Results of Davis (2006) 
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heating due to plastic work has significant 
effect on apparent strength and temperature  



Velocities and Strain Rates for 
Veloce Experiment 
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# = 0.09

• Y ≈ 0.66 GPa 

• P ≈ 8.5 GPa 

•  temperature rise due to 
plastic work about 10% 
effect on Y but miniscule 
effect on quasi-isentrope 



Strain Rate Dependence - Initial Take 

•  ramp loading results extend 
strength data for aluminum 
above 106 s-1 

•  data consistent with strong rate 
sensitivity beginning around 104 
s-1 
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The Effect of Pressure 

•  range of pressures for different techniques: 
- negligible for quasi-static regime 
- negligible for Hopkinson bar experiments 
- ~3 GPa for pressure-shear experiments 
- ~8.5 GPa for ramp loading experiments 

•  theoretical arguments suggest strain rate should scale 
with shear modulus, which increases with pressure 

•  estimate zero-pressure flow stress using 

•  lowers Y by about 34% for ramp loading and about 
17% for pressure-shear 
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Strain Rate Dependence 
- The Effect of Pressure 

•  zero-pressure flow strengths 
suggest that strong strain rate 
sensitivity doesn’t occur until 
~107 s-1 

•  scaling is very simplistic and may 
not be entirely accurate 



Pressure Effects in 
Other Materials 

•  pressure ~constant in pressure-shear experiments 
(3-5 GPa),  

•  thus, pressure effect will be less in most other 
materials (which will have higher bulk modulus than 
aluminum) 

•  for ramp loading to a constant strain level, pressure 
effects in aluminum, copper, and tantalum are 
comparable (at ε=0.09, P=9, 16, and 20 GPa, 
respectively)  



Conclusions 

•  ramp loading can be used to extend strength 
measurements to strain rates well above those for other 
techniques 

•  must account for heating due to plastic work to obtain 
correct strength value 

•  when comparing ramp loading results to quasi-static and 
Hopkinson bar data, it is necessary to account for the 
mean stress (hydrostatic pressure) 

•  in pressure-shear experiments, this effect is non-negligible 
for aluminum but small for most other materials 

•  data suggests strong rate sensitivity doesn’t occur in 6061-
T6 aluminum until strain rates of ~107 s-1 


