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;»' The Mechanics Viewpoint:
Strain Rate Dependence
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5% The Shock Physics Viewpoint:

Pressure Dependence
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Ramp Loading Techniques Can
Access Rates of 10° s-' and Above

Graded Density Impactor, Barker, 1984 Magnetic Loading - Veloce
electrical aluminum
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. free surface velocities measured for
multiple sample thicknesses with VISAR

- iterative characteristics analysis used to
determine uniaxial strain material
response, 0 = 0(€)

- estimate strain rate based on velocity

measurements - relatively constant for
2.5 and 3.5 mm
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> Comparison to Hydrostat

Fowles, G. R. (1961). "Shock wave compression of hardened and
annealed 2024 aluminum," J. Appl. Phys. 32, 1475-1487.

Y = 1.5(0,(p,T)- P(p,T))

T compare shock state to
HEL /,/“\;\16“5 hydrostatic state at same
LY density (with appropriate
thermal corrections)

Stress (GPa)

Strain

applied to ramp loading: Al - Barker (1984), Smith et al. (2007)
Mo - Reisman et al. (2001)
W - Chhabildas & Barker (1988)
diamond - Bradley et al. (2009)

good: simple, continuous measurement, compliments other techniques
bad: difference of two large numbers, uncertainties in hydrostat
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The Issue of Temperature

- temperature along the isentrope calculated using

thermodynamic relationships and the EOS

- Non-isentropic processes occur in experiments

(viscosity, strength, etc.)

- therefore, must account for irreversible processes

- focus on heating due to plastic work
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;;,' Calculation of Temperature
Change Due to Plastic Work

some preliminary equations:

deviatoric stress flow stress rate of deformation tensor
7’ l _ 3 Y
Gij - O-ij — 351'jakk Y = _3611 D = 1 dVl- + de
_ 1 & = 3 i A
- Gij _ §5lj6 ~~mean — 5(_0-11 — P) 2 dxj dxi
stress

work equations:

dw dw dw
rate of work —— =0 D, = Vo4 12
dt TV dt dt
/ \ assumption:
volumetric rate of work deviatoric rate of work d::avi_atoric elastic
strain energy is
dw,, =-PD, dw, = gl{le_’j small
at di | dw, aw,
=2Y P dt dt
p




V

,_j_,,/ Calculation of Temperature
' Change Due to Plastic Work (2)

temperature calculation along the quasi-isentrope:

Taylor-Quinney factor
(assumed= 1)

i 1(dWV +a’WP]_ 1(dep+de]
c\ P p ) clp 3p

1% Vv

oP
temperature change heating due to b= ﬁ

along the isentrope plastic work

=30k,

Vv

pressure calculation:

szﬁdp+ﬁ b dw ,, = Sdp+,B 2bY
p c,p p 3¢,p”

dp
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P ..9/ Strength Calculations from
Al Results of Davis (2006)

- Experimental data - Davis, J.-P. (2006). J. Appl. Phys. 99, 103512.
- Sesame 3700 EOS - Kerley, G. |. (1987). Int. J. Impact Eng. 5, 441-449.
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Strength Calculations from
Al Results of Davis (2006)

- Experimental data - Davis, J.-P. (2006). J. Appl. Phys. 99, 103512.
- Sesame 3700 EOS - Kerley, G. |. (1987). Int. J. Impact Eng. 5, 441-449.
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heating due to plastic work has significant

effect on apparent strength and temperature



Velocities and Strain Rates for

Veloce Experiment
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-Y = 0.66 GPa
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- temperature rise due to

plastic work about 10%
effect on Y but miniscule
effect on quasi-isentrope
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s> The Effect of Pressure

- range of pressures for different techniques:
-negligible for quasi-static regime
—-negligible for Hopkinson bar experiments
—-~3 GPa for pressure-shear experiments
-~8.5 GPa for ramp loading experiments

- theoretical arguments suggest strain rate should scale
with shear modulus, which increases with pressure

. estimate zero-pressure flow stress using

G

0

Y
=GP

- lowers Y by about 34% for ramp loading and about
17% for pressure-shear
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’ /_,9/ Strain Rate Dependence
| - The Effect of Pressure
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o & Pressure Effects in
Other Materials

. pressure ~constant in pressure-shear experiments
(3-5 GPa),

- thus, pressure effect will be less in most other
materials (which will have higher bulk modulus than

aluminum)

- for ramp loading to a constant strain level, pressure
effects in aluminum, copper, and tantalum are

comparable (at €=0.09, P=9, 16, and 20 GPa,
respectively)
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Conclusions

- ramp loading can be used to extend strength
measurements to strain rates well above those for other
techniques

- must account for heating due to plastic work to obtain
correct strength value

- when comparing ramp loading results to quasi-static and
Hopkinson bar data, it is necessary to account for the
mean stress (hydrostatic pressure)

. in pressure-shear experiments, this effect is non-negligible
for aluminum but small for most other materials

. data suggests strong rate sensitivity doesn’t occur in 6061-
T6 aluminum until strain rates of ~107 s



