
Generation of Accurate Benchmarks for 
Transport in Stochastic Media by Means of 

Dynamic Error Control

Shawn D. Pautz
Brian C. Franke

Sandia National Laboratories
Albuquerque, NM, U.S.

International Conference on Mathematics and Computational Methods 
Applied to Nuclear Science and Engineering (M&C 2011)

Rio de Janeiro, Brazil
May 12, 2011

SAND 2011-???

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of 

Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-3115C



2

Outline
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Objectives

The generation of benchmarks for 
transport in stochastic media is 
computationally intensive, so we want to 
reduce computer time where possible.

The nature of benchmarks requires good 
accuracy as well as assurances that it is 
good.

We want to measure and control 
errors for efficient computations
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Additional motivation

Computational physics increasingly 
requires quantification of errors.  This 
requires both good error estimates as well 
as ensemble calculations.  The current 
work on stochastic benchmarks may have 
lessons for other analyses.



5

Sources of error

• Statistical (insufficient realizations)

• Discretization (space, angle, energy)

• Iterative

We assume the use of a verified code!
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Common method of generating 
stochastic realizations in 1D

21 1 12

1 12 2 1 material assignment

average chord length sampled

• We sample from two materials (1 and 2) with average 

chord lengths     and

• Randomly choose the material at the left boundary and 
the chord length based on that material

• Alternate between the two materials to choose chord 
lengths

1 2
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Alternative method of generating 
stochastic realizations in 1D

• Define effective combined material with average chord 

length

• Generate geometry as before using the single effective 
material

• Randomly assign materials 1 and 2 to each region in 
proportion to their abundance

• Motivation: separates geometry generation from 
material assignment and is extendable to multi-D

 2121  c

c

1 112 2 2 12 2 2

c c c c c c c c c

material assignment

average chord length sampled
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Example: 2D Markovian geometry
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Control of statistical error

• Perform transport calculations with small number of 
realizations (e.g. 100)

• Determine statistics of each desired transport response

• If any variances exceed desired value then double 
number of realizations and repeat the above calculations

• Continue doubling the number of realizations until 
statistics converge

• Note: simultaneous control of all desired responses 
(e.g. transmission, reflection, dose, etc.)
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Control of spatial discretization error

• For each realization, perform transport calculation on a 
coarse mesh and a refined mesh

• Estimate spatial error of each desired transport 
response with Richardson extrapolation:

• If any errors exceed desired value then refine mesh and 
repeat the above calculations

• Continue mesh refinement until spatial results converge

• Note: simultaneous control of all desired responses 
(e.g. transmission, reflection, dose, etc.)
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Control of iterative error

• For each realization and level of spatial refinement, 
perform transport iterations

• Estimate iterative error of each desired transport 
response as described in companion paper:

• If any errors exceed desired value then repeat the 
above calculations

• Continue iterations until error estimates converge

• Note: simultaneous control of all desired responses 
(e.g. transmission, reflection, dose, etc.)
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Overall benchmark process

Iterative 
convergence?

Spatial 
convergence?

Last 
realization?

Statistical 
convergence?

Perform iteration

yes

yes

yes

yes
Done

Refine mesh
no

Create new 
realization

no

Increase 
ensemble size

no

no

Initial ensemble

Optional: 
project 
solution
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Revisit previous benchmarks

• Benchmark problems taken from Adams et al. (1989).

• Problems consist of nine different Markovian materials 
and distributions

• Isotropic source on left boundary

• Fixed S16 Gauss-Legendre quadrature

• We report only slab widths of 10

• Quantities we examine: reflection, transmission, 
average flux

• Use Sceptre for transport calculations
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Statistical errors

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

1600 12800 100 25600 3200 200 1600 25600 800

12800 819200 51200 12800 25600 25600 12800 102400 51200

800 12800 3200 800 6400 3200 800 25600 6400

T

R

• Original benchmarks used 105 realizations per problem

• Most results overresolved statistically

• Some results not statistically converged

Number of realizations required to obtain 1% error in each quantity of interest



15

Process for examining spatial and/or 
iterative errors

In order to isolate the spatial and/or iterative errors we 
examine correlated problems: 

• Generate 100 realizations for a given problem

• Compute highly resolved results for these realizations

• Separately compute results using proposed error 
control mechanisms

• Compare corresponding results for each realization

- Fraction of realizations with excessive error

- Error in ensemble average
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Fraction of realizations exceeding desired 
(10-4) spatial error vs. spatial control options

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

1 1 1 0.73 1 1 0.92 1 1

1 1 1 0.73 1 1 0.92 1 1

1 1 1 0.73 0.99 1 0.92 0.69 1

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

0 0 0 0.21 0 0 0 0.06 0

0.01 0 0 0.28 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

0.01 0 0 0.40 0.04 0.02 0 0.40 0.05

0.68 0.63 0.13 0.60 0.68 0.39 0 0.75 0.29

0 0 0 0 0 0.02 0 0 0

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

0 0 0 0.01 0 0 0 0.06 0

0.01 0 0 0.12 0 0 0 0 0

0 0 0 0 0 0 0 0 0



T

R



T

R



T

R



T

R

Control variable

R

T



TR



17

Ensemble spatial error



T

R



T

R



T

R



T

R

Control variable

R

T



TR

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1

0.95 0.4 0.96 0.25 0.6 0.58 0.59 0.16 0.38

0.65 0.26 0.7 0.35 0.54 0.59 0.73 0.18 0.52

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

4.3e-5 1.5e-6 1.6e-5 4.0e-4 3.6e-7 1.1e-5 6.0e-5 1.7e-6 3.1e-5

2.5e-4 6.1e-5 6.5e-5 2.4e-4 1.1e-6 6.1e-6 1.2e-4 1.5e-5 1.7e-5

2.3e-5 4.4e-6 2.5e-5 1.6e-6 6.4e-7 7.3e-6 1.3e-4 3.4e-6 2.5e-5

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

2.1e-4 2.3e-5 4.6e-5 8.2e-4 1.8e-6 2.6e-4 5.4e-5 7.0e-6 2.7e-4

1.0e-3 7.7e-4 2.4e-4 3.9e-4 9.1e-5 2.8e-5 1.1e-4 7.7e-4 1.4e-4

6.5e-5 8.3e-5 8.1e-5 7.5e-6 1.7e-5 6.4e-5 1.1e-4 1.6e-5 1.1e-4

Result
Stochastic distribution

1 2 3 4 5 6 7 8 9

4.3e-5 1.5e-6 1.4e-5 1.6e-4 3.0e-7 1.1e-5 5.2e-5 9.8e-7 2.6e-5

2.5e-4 6.1e-5 5.5e-5 1.2e-4 1.0e-6 6.1e-6 1.1e-4 1.3e-5 1.0e-5

2.3e-5 4.4e-6 2.2e-5 6.8e-6 6.0e-7 7.3e-6 1.1e-4 2.2e-6 1.8e-5
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Observations regarding 
control of spatial errors

• Control based on reflection alone problematic (caused 
by zero residual after one iteration)

• Results for a particular quantity of interest are generally 
better when that quantity is controlled

• Best results when all quantities controlled

• Large fraction of realizations with excessive individual 
errors does not generally lead to grossly excessive error 
in ensemble average



19

Fraction of realizations exceeding desired 
(10-4) spatial error vs. iterative control options

Control and 
measured 
variable

R

T



Iterative 
tolerance

Stochastic distribution
1 2 3 4 5 6 7 8 9

1e-4 1 1 1 0.73 1 1 0.92 1 1
1e-5 1 1 1 0.73 1 1 0.92 1 1
1e-6 1 1 1 0.73 1 1 0.92 1 1
1e-7 1 1 1 0.73 1 1 0.92 1 1

Iterative
tolerance

Stochastic distribution
1 2 3 4 5 6 7 8 9

1e-4 0.02 0 0 0.28 0 0 0 0 0
1e-5 0.01 0 0 0.28 0 0 0 0 0
1e-6 0.01 0 0 0.28 0 0 0 0 0
1e-7 0.01 0 0 0.28 0 0 0 0 0

Iterative
tolerance

Stochastic distribution
1 2 3 4 5 6 7 8 9

1e-4 0 0 0 0 0 0.02 0 0 0
1e-5 0 0 0 0 0 0.02 0 0 0
1e-6 0 0 0 0 0 0.02 0 0 0
1e-7 0 0 0 0 0 0.02 0 0 0
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Fraction of realizations exceeding desired (10-4) 
spatial error vs. iterative control options, fluxes 

projected with mesh refinement

Control and 
measured 
variable

R

T



Iterative
tolerance

Stochastic distribution
1 2 3 4 5 6 7 8 9

1e-4 0.01 0 0 0.12 0 0 0 0.06 0
1e-5 0 0 0 0.03 0 0 0 0.06 0
1e-6 0 0 0 0.03 0 0 0 0.06 0
1e-7 0 0 0 0.03 0 0 0 0.06 0

Iterative
tolerance

Stochastic distribution
1 2 3 4 5 6 7 8 9

1e-4 0.74 0 0.11 0.51 0 0.27 0.11 0 0.24
1e-5 0.21 0 0 0.47 0 0.01 0.05 0 0
1e-6 0.01 0 0 0.35 0 0 0.01 0 0
1e-7 0.01 0 0 0.30 0 0 0 0 0

Iterative
tolerance

Stochastic distribution
1 2 3 4 5 6 7 8 9

1e-4 0.94 0 0.19 0.55 0.05 0.57 0.04 0 0.67
1e-5 0.90 0 0.16 0.54 0.05 0.54 0.04 0 0.66
1e-6 0.89 0 0.17 0.54 0.05 0.54 0.04 0 0.66
1e-7 0.89 0 0.17 0.54 0.05 0.54 0.04 0 0.66
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Observations regarding 
control of iterative errors

• If the starting guess for iterations is zero, then the 
iterative tolerance need not be very small relative to the 
desired spatial error

• Projecting the solution on a coarse mesh onto a refined 
mesh as the starting guess avoids problems with 
reflection as a control variable

• Projecting the solution interferes with the control of 
other variables (asymptotic assumption violated), which 
can only be partly compensated for by using a tighter 
iterative tolerance
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Conclusions

• The simultaneous control of stochastic, spatial, and 
iterative errors is complicated – it is difficult to control or 
analyze each separately

• Errors in individual realizations tend to be averaged 
away in ensemble results

• Need more work
– Control of reflection variable

– Projection of fluxes as starting guess

• The above issues may also affect other ensemble-based 
analyses, not just stochastic benchmarks


