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e Objectives

The generation of benchmarks for
transport in stochastic media is
computationally intensive, so we want to
reduce computer time where possible.

The nature of benchmarks requires good
accuracy as well as assurances that it is
good.

We want to measure and control
errors for efficient computations




= Additional motivation

Computational physics increasingly
requires quantification of errors. This
requires both good error estimates as well
as ensemble calculations. The current
work on stochastic benchmarks may have
lessons for other analyses.
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M o Sources of error

 Statistical (insufficient realizations)
* Discretization (space, angle, energy)
* |[terative

We assume the use of a verified code!
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Common method of generating
stochastic realizations in 1D

* We sample from two materials (1 and 2) with average

chord lengths A, and 4,

« Randomly choose the material at the left boundary and

the chord length based on that material

e Alternate between the two materials to choose chord
lengths

1 2 1 2 1 material assignment

A 2y A 2y Z average chord length sampled
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Alternative method of generating
stochastic realizations in 1D

* Define effective combined material with average chord

length A =AA, /(4 +A,)

« Generate geometry as before using the single effective

material

 Randomly assign materials 1 and 2 to each region in
proportion to their abundance

« Motivation: separates geometry generation from
material assignment and is extendable to multi-D

1 2 2 1 1 2 2 2 2 1 material assignment

Ao A Ao Ao A, A, Ao A A A average chord length sampled

7 mh
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Example: 2D Markovian geometry




Control of statistical error

* Perform transport calculations with small number of
realizations (e.g. 100)

» Determine statistics of each desired transport response

« If any variances exceed desired value then double
number of realizations and repeat the above calculations

 Continue doubling the number of realizations until
statistics converge

* Note: simultaneous control of all desired responses
(e.g. transmission, reflection, dose, etc.)
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Control of spatial discretization error

 For each realization, perform transport calculation on a
coarse mesh and a refined mesh

 Estimate spatial error of each desired transport
response with Richardson extrapolation:

_ fﬁne o ﬁoarse E — & GC] — 3 &

fﬁne rf —1 rf —1

* If any errors exceed desired value then refine mesh and
repeat the above calculations

« Continue mesh refinement until spatial results converge

* Note: simultaneous control of all desired responses
(e.g. transmission, reflection, dose, etc.)
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Control of iterative error

» For each realization and level of spatial refinement,
perform transport iterations

» Estimate iterative error of each desired transport
response as described in companion paper:
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* If any errors exceed desired value then repeat the
above calculations

« Continue iterations until error estimates converge

* Note: simultaneous control of all desired responses
(e.g. transmission, reflection, dose, etc.)
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Initial ensemble

Create new
realization

Optional:
project
solution

\ !

Perform iteration

Refine mesh

&

Iterative
convergence?

yes

Spatia
convergence?

yes

no Last

Increase
ensemble size

&

realization?

no tatistica yes
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convergence? —

Done
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M o Revisit previous benchmarks
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* Benchmark problems taken from Adams et al. (1989).

* Problems consist of nine different Markovian materials
and distributions

* Isotropic source on left boundary
 Fixed S,; Gauss-Legendre quadrature
» We report only slab widths of 10

* Quantities we examine: reflection, transmission,
average flux

» Use Sceptre for transport calculations
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Statistical errors

Number of realizations required to obtain 1% error in each quantity of interest

Stochastic distribution
1 2 3 4 5 6 7 8 9

<R> 1600 | 12800 100 25600 [ 3200 200 1600 | 25600 800
<T> 12800 | 819200 | 51200 | 12800 | 25600 | 25600 | 12800 | 102400 | 51200
<ll7> 800 12800 [ 3200 800 6400 3200 800 25600 | 6400

Result

« Original benchmarks used 10° realizations per problem
* Most results overresolved statistically
« Some results not statistically converged
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Process for examining spatial and/or
iterative errors

In order to isolate the spatial and/or iterative errors we
examine correlated problems:

« Generate 100 realizations for a given problem
« Compute highly resolved results for these realizations

« Separately compute results using proposed error
control mechanisms

« Compare corresponding results for each realization
- Fraction of realizations with excessive error
- Error in ensemble average

Sandia
r.h National
Laboratories




Fraction of realizations exceeding desired

(10-4) spatial error vs. spatial control options

Control variable

(R)
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Result Stochastic distribution
] 2 3 4 5 6 7 8 9
(R) 1 1 1 0.73 1 1 0.92 1 1
(T) 1 1 1 0.73 1 1 0.92 1 1
() 1 1 1 0.73 | 0.99 1 092 | 0.69 1
Result Stochastic distribution
] 2 3 4 5 6 7 8 9
(R) 0 0 0 0.21 0 0 0 0.06 0
(T) 0.01 0 0 0.28 0 0 0 0 0
() 0 0 0 0 0 0 0 0 0
Result Stochastic distribution
] 2 3 4 5 6 7 8 9
(R) 0.01 0 0 040 | 0.04 | 0.2 0 040 | 0.05
(T) 068 | 063 | 013 | 060 | 068 | 039 0 075 | 029
() 0 0 0 0 0 0.02 0 0 0
Result Stochastic distribution
] 2 3 4 5 6 7 8 9
(R) 0 0 0 0.01 0 0 0 0.06 0
(T) 0.01 0 0 0.12 0 0 0 0 0
() 0 0 0 0 0 0 0 0 0
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Ensemble spatial error

Control variable

(R)
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Result

Stochastic distribution

1 2 3 4 5 6 7 8 9
(R) 1 1 1 1 1 1 1 1 1
(T) 0.95 0.4 096 | 0.25 0.6 058 | 059 | 016 | 038
W) | o065 | 026 | 07 | 035 | 054 | 059 | 073 | 018 | 0.52

Result Stochastic distribution

1 2 3 4 5 6 7 8 9
(R) | 43¢5 | 1.5e-6 | 1.6e-5 | 4.0c-4 | 3.6e-7 | 1.1e-5 | 6.0e-5 | 1.7¢-6 | 3.le-5
(T) | 2.5¢-4 | 6.1e-5 | 6.5¢-5 | 2.4e-4 | 1.1e-6 | 6.1e-6 | 1.2¢e-4 | 1.5¢-5 | 1.7e-5
W) | 23e-5 | 44e-6 | 2.5e-5 | 1.6e-6 | 6.4e-7 | 7.3¢-6 | 1.3¢-4 | 3.4e-6 | 2.5¢-5
Result Stochastic distribution
1 2 3 4 5 6 7 8 9
(R) | 2.1e4 | 2.3¢-5 | 4.60-5 | 8.2¢-4 | 1.8¢-6 | 2.6e-4 | 5.4e-5 | 7.0e-6 | 2.7e-4
(T) | 1.0e:3 | 7.7e-4 | 2.4e-4 | 3.9¢-4 | 9.1e-5 | 2.8¢-5 | l.1e-4 | 7.7e-4 | 1.4e-4
(W) | 65e5 | 83e-5 | 8.1e-5 | 7.5¢-6 | 1.7e-5 | 6.4e-5 | 1.1e-4 | 1.6e-5 | 1.1e-4
Result Stochastic distribution
1 2 3 4 5 6 7 8 9
(R) | 43¢5 | 1.5e-6 | 1.4e-5 | 1.6e-4 | 3.0e-7 | 1.1e-5 | 5.2¢-5 | 9.8¢-7 | 2.6e-5
(T) | 2.5¢-4 | 6.1e-5 | 5.5¢-5 | 1.2¢-4 | 1.0e-6 | 6.1e-6 | 1.1e-4 | 1.3e-5 | 1.0e-5
W) | 23e-5 | 44e-6 | 2.2e-5 | 6.8¢-6 | 6.0e-7 | 7.3¢-6 | 1.1e-4 | 2.2¢-6 | 1.8¢-5
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Observations regarding
control of spatial errors

« Control based on reflection alone problematic (caused
by zero residual after one iteration)

 Results for a particular quantity of interest are generally
better when that quantity is controlled

 Best results when all quantities controlled

* Large fraction of realizations with excessive individual
errors does not generally lead to grossly excessive error
In ensemble average
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Fraction of realizations exceeding desired

(10-4) spatial error vs. iterative control options

Control and
measured
variable

(R)
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Iterative Stochastic distribution
tolerance 1 2 3 4 5 6 7 8 9
le-4 1 1 1 0.73 1 1 0.92 1 1
le-5 1 1 1 0.73 1 1 0.92 1 1
le-6 1 1 1 0.73 1 1 0.92 1 1
le-7 1 1 1 0.73 1 1 0.92 1 1

Iterative Stochastic distribution
tolerance 1 2 3 4 5 6 7 8 9
le-4 0.02 0 0 0.28 0 0 0 0 0
le-5 0.01 0 0 0.28 0 0 0 0 0
le-6 0.01 0 0 0.28 0 0 0 0 0
le-7 0.01 0 0 0.28 0 0 0 0 0

Iterative Stochastic distribution
tolerance 1 2 3 4 5 6 7 8 9
le-4 0 0 0 0 0 0.02 0 0 0
le-5 0 0 0 0 0 0.02 0 0 0
le-6 0 0 0 0 0 0.02 0 0 0
le-7 0 0 0 0 0 0.02 0 0 0
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Fraction of realizations exceeding desired (10-4)
spatial error vs. iterative control options, fluxes

projected with mesh refinement

Control and
measured
variable

(R)
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Iterative Stochastic distribution

tolerance 1 2 3 4 5 6 7 8 9
le-4 0.01 0 0 0.12 0 0 0 0.06 0
le-5 0 0 0 0.03 0 0 0 0.06 0
le-6 0 0 0 0.03 0 0 0 0.06 0
le-7 0 0 0 0.03 0 0 0 0.06 0

Iterative Stochastic distribution

tolerance 1 2 3 4 5 6 7 8 9
le-4 0.74 0 0.11 0.51 0 0.27 0.11 0 0.24
le-5 0.21 0 0 0.47 0 0.01 0.05 0 0
le-6 0.01 0 0 0.35 0 0 0.01 0 0
le-7 0.01 0 0 0.30 0 0 0 0 0

Iterative Stochastic distribution

tolerance 1 2 3 4 5 6 7 8 9
le-4 0.94 0 0.19 0.55 0.05 0.57 0.04 0 0.67
le-5 0.90 0 0.16 0.54 0.05 0.54 0.04 0 0.66
le-6 0.89 0 0.17 0.54 0.05 0.54 0.04 0 0.66
le-7 0.89 0 0.17 0.54 0.05 0.54 0.04 0 0.66
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Observations regarding
control of iterative errors

* If the starting guess for iterations is zero, then the
iterative tolerance need not be very small relative to the
desired spatial error

* Projecting the solution on a coarse mesh onto a refined
mesh as the starting guess avoids problems with
reflection as a control variable

* Projecting the solution interferes with the control of
other variables (asymptotic assumption violated), which
can only be partly compensated for by using a tighter
iterative tolerance
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Conclusions

The simultaneous control of stochastic, spatial, and
iterative errors is complicated — it is difficult to control or
analyze each separately

Errors in individual realizations tend to be averaged
away in ensemble results

Need more work
— Control of reflection variable
— Projection of fluxes as starting guess

The above issues may also affect other ensemble-based
analyses, not just stochastic benchmarks
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