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Mission needs motivate research in simulation-
based analysis

http://safetycampus.files.wordpress.com/2008/12/forklift_accident_with_bomb.jpg

System Engineers

Analysts

Algorithm 
Developers

● Probability of Loss of Assured     
  Safety if dropped?
● Adjust handling height?

● Use simulation with optimization  
  and UQ tools?
● Most info from limited number     
  of simulations?

● New mathematics and statistics   
  algorithms?
● Efficient implementations?
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Categorical/discrete variables are finding their 
way into engineering and science simulations

● Modeling choices

– Alternate plausible 
models

– Choice between multiple 
materials

● Design choices

– Material design

– Operational settings
Water management system
(Picture courtesy of G. Gray)

Branched tetrapod nanocrystal 
generated by NREL “tetra” code 
(Picture courtesy of P. Graf)

System bolts
(Picture courtesy of J. Crowell)

Key analysis characteristics 
●  Small number of variables
●  Simulation based on computationally  
    expensive equation solver
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Additionally, large-scale “system of systems” 
simulations have many discrete variables

● Large-scale models 
decomposed into 
constitutive system 
models

● Black-box model of 
actor behavior, 
independent 
subsystems making 
choices based on input 
from others

Key analysis characteristics 
●  Large number of discrete and continuous variables
●  Objective based on composition of heterogeneous models
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Would like to use surrogate models to improve 
tractability of simulation-based analysis 

● Optimization and UQ methods are computationally 
expensive

● However, in mixed variable spaces...

– Usual surrogate assumptions no longer hold
● Continuous inputs
● How output varies as input varies

– Mixed variable surrogate approaches untested

– Need a good testbed

Goal:  Evaluate and compare mixed variable  
surrogate modeling approaches.
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Approach 1: Categorical Regression

● Uses indicator functions for categorical variable levels

– Y=β0 + β1X1 + β2X2 where X1 is continuous, X2 is binary

● Y=β0 + β1X1 for X2=0, Y=β0 + β1X1 + β2 for X2=1

● Results in 2 different models

● Computationally expensive

– Need enough samples over continuous variables for EACH 
discrete combination for accurate regression function

– Increase number of discrete variables + increase number of 
“levels” per variable => combinatorial explosion
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Approach 2: Treed Gaussian Process (TGP)

● Gaussian process is a specified 
by mean and covariance

● TGP partitions space and 
constructs GP in each partition

● Mixed variable variant allows 
partitioning over 
categorical/discrete variables

– Transforms each variable-level 
pair into binary variable

– GP constructed at “leaf” nodes 
over only continuous variables

R. B. Gramacy and M. Taddy.   “Categorical inputs, sensitivity analysis, optimization and importance tempering with 
tgp version 2, an R package for treed Gaussian process models.”  R manual available at http://cran.r-project.org/, 2009.

http://cran.r-project.org/
http://cran.r-project.org/
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Approach 3: Adaptive COmponent Selection and 
Smoothing Operator (ACOSSO)

● Univariate smoothing spline estimate

● ACOSSO Estimate:  f is an additive function

Term which penalizes 
roughness

Term which penalizes 
trend

Term which penalizes 
categorical predictors

C.B. Storlie, J.C. Helton,, B. J. Reich, and L.P. Swiler. “Analysis of Computationally 
Demanding Models with Qualitative and Quantitative Inputs.”  Draft manuscript.
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We established requirements for a testbed 

● Fast running evaluations

● Easy to compile, cross-platform compatibility

● Extendable

● File input/output

● Scalability of function in terms of number discrete 
variables and/or levels per variable

● Ability to control problem complexity
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Testbed includes three defined functions
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Scaled number of variables and number of levels per discrete variable.
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Testbed also includes a random polynomial 
generator

● Generates a random polynomial 

– Degree between 2 and 6

– Number of variables between 1 and 15
● Uses a system of linear equations to solve for the 

random coefficients, described in:

– McDaniel, W. R. and B. E. Ankenman, “A Response 
Surface Test Bed.” Qual. Reliab. Engng. Int. 2000; 16: 
363–372

● Can control the degree of nonlinearity, range of 
polynomial values, etc.
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We applied the same evaluation process to all 
candidate surrogates using these test problems

● Looked at surrogate performance over varying 
number of build points (LHS sample points)

● Used mean squared error (MSE) as a measure of 
goodness

– Calculated over a grid (dimensioned based on the 
number of inputs)

● Categorical Regression run in DAKOTA

– Generate a separate continuous surrogate for each 
combination of discrete variable values/levels

● TGP and ACOSSO run in R
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Observations after first set of preliminary 
experiments were enlightening

● Categorical Regression performed very well on problems with 
small numbers of discrete variables/levels

● ACOSSO performed very well overall

● TGP performance was mixed

– Ability to identify the splits

– Not sufficient to aggregate across discrete levels

– Adaptive methods may lead to improvement

● ACOSSO seemed to be the most scalable with respect to 
number of variables and discrete levels

● Need to further investigate the effects of parameter interactions
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Results:  Goldstein-Price Function

● Function of 2 variables that ranges over six orders of 
magnitude

● Y=(1+(x1+x2+1)2*(19-14x1+3x12-
14x2+6x1x2+3x22)*(30+(2x1-3x2) 2*(18-32x1)+12x12+48x2-
36x1x2+27x22))
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Results: Goldstein-Price Function

Number Build Points MSE TGP MSE ACOSSO
50 3.87E+07 2.42E+07

100 3.89E+04 9.67E+06
150 2.50E+03 6.67E+06
200 9.51E+01 5.33E+06
250 4.39E+01 1.55E+06
300 2.20E+03 2.14E+04

Actual Function

Number Build Points MSE TGP MSE ACOSSO
50 4.051E-01 1.164E-01

100 1.036E-02 5.991E-03
150 7.236E-03 8.764E-03
200 1.778E-04 3.718E-04
250 5.379E-03 1.803E-04
300 1.080E-02 3.208E-07

Log Scaled Function

TGP performs better 
with the large range of 
output, because it can 
partition and create 
different GPs over 
different parts of the 
space.  In log space, 
ACOSSO performs 
better.
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Results: Goldstein-Price Function

TGP partitioning over 
levels of discrete 
variables

TGP predictions for the three 
discrete levels, as a function of the 
continuous one
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Results:  3rd-order Polynomial

● 10 terms, significant interaction

● We looked at two aspects:  increasing the magnitude of the 
overall function (shifting it up or down from on the order of -2 
below to -200K) and increasing the range (by multiplying by 
factors of 10)
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-1

-0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X1=0

X1=1

X1=2
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Results:  3rd-order Polynomial

Build Points TGP: ACOSSO
50 1.02E-08 8.97E-07

100 3.05E-11 1.61E-08
150 3.95E-12 1.46E-10
200 1.75E-12 1.11E-10
250 9.60E-13 2.81E-10
300 3.65E-12 8.75E-12

Build Points TGP: ACOSSO
50 1.02E-02 8.97E-01

100 3.76E-05 1.60E-02
150 3.41E-06 1.45E-04
200 1.47E-06 1.07E-04
250 1.07E-06 2.76E-04
300 3.72E-06 8.42E-06

Build Points TGP: ACOSSO
50 1.023E+02 8.965E+03

100 3.050E-01 1.610E+02
150 3.143E-02 1.480E+00
200 3.781E-02 1.119E+00
250 9.826E-03 2.411E+00
300 3.894E-02 9.024E-02

Shift Factor:  1M

Shift Factor: 10000

Shift Factor: 10

Build Points TGP ACOSSO
50 6.03E-05 5.84E-03

100 1.99E-06 3.30E-04
150 4.29E-07 1.36E-06
200 3.56E-07 7.56E-07
250 7.71E-07 1.69E-06
300 3.28E-07 2.42E-07

Build Points TGP ACOSSO
50 6.03E+01 5.84E+03

100 1.99E+00 3.30E+02
150 4.26E-01 1.38E+00
200 7.43E-01 8.61E-01
250 5.29E-01 1.67E+00
300 2.59E-01 2.33E-01

Scale Factor:  100

Scale Factor:  100000

TGP has better performance in all cases, 
regardless of whether the function is shifted or 
scaled, especially at with fewer build points. 
TGP performs better with larger function 
variations. 
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Results: Simple Function 10x1x2^2

● We thought this would be trivial

● The constant line at x1=0 proved to be pathological for 
TGP
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Results: Simple Function 10x1x2^2

● TGP has an option called “basemax” for mixed categorical/continuous variables.

● Basemax allows you to specify which variables are used to construct the GP at the leaves of 
the partitioned tree.  Typically, basemax is used to specify the continuous variables:  the tree 
can partition over categorical but the GP is only built on the continuous variables.

● In the case of this function, X2 is not predictive when X1=0.  So, TGP fails in this case 
(constant MSE of around 4 regardless of number of build points)

● It can be remedied by not specifying basemax, but then the GP is built based on both the 
continuous and categorical variables, essentially treating the categorical as continuous. This 
usually is not the behavior we want.

TGP with no 
Build Points TGP basemax specified ACOSSO

50 4.28E+00 5.97E-06 4.71E-05
100 4.20E+00 5.04E-08 2.80E-06
150 3.71E+00 1.55E-08 2.84E-05
200 3.45E+00 1.32E-08 3.62E-07
250 3.56E+00 1.91E-08 1.71E-07
300 3.88E+00 ** 1.49E-07
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Results: Simple Function 10x1x2^2

TGP gets the prediction for X1=-1, but cannot 
resolve the difference between X1=0 and 
X1=1.  It does try to split over the continuous 
variable as well as the discrete, but this 
doesn’t help.
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Results: Variation on 10x1x2^2

● Change line y=0 at x1=0 to y=-x2 at x1=0

● TGP has no problem in this case



24

Results: 4th-order Schittkowski function

● Y = 100(x2-x1^2)^2 + (1-x1^2)

● Shows both interactions and scale effects

0
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X1=-2
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Build Points TGP ACOSSO
50 . E-6 03 05 . E-5 84 03

100 . E-1 99 06 . E-3 30 04
150 . E-4 29 07 . E-1 36 06
200 . E-3 56 07 . E-7 56 07
250 . E-7 71 07 . E-1 69 06
300 . E-3 28 07 . E-2 42 07

Build Points TGP ACOSSO
50 . E+6 03 01 . E+5 84 03

100 . E+1 99 00 . E+3 30 02
150 . E-4 26 01 . E+1 38 00
200 . E-7 43 01 . E-8 61 01
250 . E-5 29 01 . E+1 67 00
300 . E-2 59 01 . E-2 33 01

Scale Factor:  100

Scale Factor:  100000
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Observations, the sequel

● Surrogate models are imperative for computational tractability 
of engineering analyses

● ACOSSO continues to have the most consistent performance

● TGP is best performer for problems with responses that vary 
over large orders of magnitude

● Indications are that TGP handles interactions better, but this 
still needs further exploration

● Still need to investigate

– Degree of variable predictivity needed for TGP

– Effects of degree/type of nonlinearity

– Improving efficiency of TGP and ACOSSO implementations
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Surrogate models improve computational tractability
(Queipo, Haftka, Shyy, Goel, Vaidyanathan, and Tucker (2005))

● Response surface models

– Draw data from simulation

– Fit fast approximation to data

● Reduced-order models

– Reduce the number of variables

– Principal component analysis, proper orthogonal decomposition, 
dimensionality reduction

● Multi-fidelity models

– Coarsen the discretization

– Reduce the amount of geometric detail

– Reduce the amount of physics included

● Stochastic expansion

– Build global approximation as function of uncertain variables

– Polynomial chaos, stochastic collocation



29

One of our favorite response surfaces is the 
Gaussian process

● Specified by mean and covariance

● Vanilla covariance function

– σ and ρ
i
 found by maximizing likelihood function

Key feature:  Estimates both mean behavior and variance.
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Approach 2: Treed Gaussian Process (TGP)

● Gaussian process is a random process specified by mean and 
covariance functions

● Mixed variable variant allows partitioning over categorical/discrete 
variables

– Transforms each variable-level pair into binary variable
– GP constructed at “leaf” nodes over only continuous variables

● Alternate approach has explicit representation of categorical 
variables in GP

– P. Qian, H. Wu, and C.F.J. Wu. “Gaussian process models for 
computer experiments with qualitative and quantitative factors.” 
Technometrics, 50(3):383–396, 2008.

– Recommend isotropic correlation structure
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Testbed: Test Function 1
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Testbed: Test Function 2
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Testbed: Test Function 3

● Initially started with 4 variables

– 2 continuous on [0,2]

– 2 discrete with values [0,1,2]

● Easy to scale up number of levels

– Scaled number of levels to 5, with values [-1,0,1,2,3]

● Easy to scale up number of discrete variables

– Scaled up to 5 discrete variables, with 3 and 5 levels

● Can also explore symmetry and function separability

∑
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Test Function 1: Categorical regression works 
quite well, especially using GP

CR-neural network
CR-cubic polynomial

CR-linear polynomial
CR-GP w/quadratic trend

TGP
ACOSSO

1.00E-18

1.00E-15

1.00E-12

1.00E-09

1.00E-06

1.00E-03

1.00E+00

1.00E+03

50
100
150
200
250
300
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Test Function 2: All approaches have trouble 
resolving the categorical levels

CR-neural network
CR-cubic polynomial

CR-linear polynomial
CR-GP w/quadratic trend

TGP
ACOSSO

1.00E-18

1.00E-15

1.00E-12

1.00E-09

1.00E-06

1.00E-03

1.00E+00

1.00E+03

50
100
150
200
250
300
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Aggregation of categorical levels in TGP may be 
a disadvantage

● TGP does not fully 
partition over all discrete 
variables

● Premise was that it would 
be sufficient to create 
surrogates over partitions 
which aggregrate the 
discrete variables

● Perhaps too coarse, 
resulting in inaccurate 
surrogates
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Test Function 3: Categorical regression starts 
to degrade with slight increase in dimension

CR-neural network
CR-cubic polynomial

CR-linear polynomial
CR-GP w/quadratic trend

TGP
ACOSSO

1.00E-18

1.00E-15

1.00E-12

1.00E-09

1.00E-06

1.00E-03

1.00E+00

1.00E+03

50
100
150
200
250
300
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Test Function 3: TGP scales better with number 
of discrete variables than number of levels

● Scaling up discrete levels from 3 to 5

● Scaling up discrete variables from 2 to 5

MSE decreases more quickly for more discrete variables 
vs. an increased number of levels per variable.

Test Function 3
Discrete 2 [0-1-2] 2 [-1-0-1-2-3] 5 [0-1-2] 5 [-1-0-1-2-3]
Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 0.7217199 119.75 1.38 319.22
100 0.03391995 57.15 0.79 300.08
150 0.01617074 25.94 0.87 272.76
200 0.00631333 25.26 0.72 265.96
300 4.45E-05 17.91 0.52 231.41
500 1.74E-06 1.27 0.32 223.68

SYMMETRIC - TGP
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Test Function 3: Same trend holds for 
ACOSSO, though it still performs well

● Scaling up discrete levels from 3 to 5

● Scaling up discrete variables from 2 to 5

MSE decreases more quickly for more discrete variables 
vs. an increased number of levels per variable.

Test Function 3
Discrete 2 [0-1-2] 2 [-1-0-1-2-3] 5 [0-1-2] 5 [-1-0-1-2-3]
Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 1.20E-04 8.15E-04 2.24E-04 2.56E-01
100 9.31E-06 1.55E-03 6.27E-06 4.06E-06
150 1.50E-06 1.34E-03 2.01E-06 2.56E-04
200 1.75E-07 3.20E-06 6.97E-07 1.99E-03
300 3.17E-07 4.68E-05 1.31E-07 5.24E-05
500 7.69E-08 3.08E-04 8.56E-08 2.14E-05

SYMMETRIC - ACOSSO
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Test Function 3: Asymmetry has more adverse 
effects on TGP than ACOSSO

● Scaling up discrete levels from 3 to 5

● Scaling up discrete variables from 2 to 5

● Function is now asymmetric

Separability and lack of variable interactions, particularly between 
discrete and continuous, may be playing to the strengths of ACOSSO.

Test Function 3
Discrete 2 [1-2-3] 2 [1-2-3-4-5] 2 [1-2-3] 2 [1-2-3-4-5]
Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 53.53 11843.35 3.67E-03 0.34
100 0.62 2444.52 1.96E-03 0.18
150 0.26 3402.73 3.27E-04 0.12
200 0.15 4494.97 9.94E-04 0.07
300 0.02 2382.42 3.55E-06 0.03
500 0.01 0.39 5.78E-04 0.06

ACOSSOTGP
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Polynomial Function: Categorical regression 
performs quite well, followed by ACOSSO 

● 2nd order polynomial with 4 variables

– 2 discrete variables at levels [20,50,80]

– 2 continuous variables between 0 and 100

CR-neural network
CR-cubic polynomial

CR-linear polynomial
CR-GP w/quadratic trend

TGP
ACOSSO

1.00E-18

1.00E-15

1.00E-12

1.00E-09

1.00E-06

1.00E-03

1.00E+00

1.00E+03

50
100
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Polynomial Function: Complexity has more 
adverse effects on ACOSSO than TGP

● “Scaling” Problem Complexity

– 2nd order polynomial with 14 terms

– 3rd order polynomial with 24 terms

– 4th order polynomial with 19 terms

● 10 discrete levels (instead of 3)

Possible increase in variable interactions and increased relative impact of 
continuous variables may be playing to the strengths of TGP.

TGP ACOSSO TGP ACOSSO TGP ACOSSO
Discrete 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels]
Continuous 2[0,100] 2[0,100] 2[0,100] 2[0,100] 2[0,100] 2[0,100]

50 28.88 12.24 25.16 9.12 10.07 29.98
100 28.58 0.46 25.00 4.92 10.25 5.14
150 27.83 0.15 21.94 2.31 13.16 6.03
200 21.80 0.05 16.31 1.91 9.99 5.03
250 24.92 0.06 11.58 2.37 10.40 5.16
300 22.78 0.03 9.49 1.77 8.76 5.20

Test Function Poly 2 Test Function Poly 3 Test Function Poly 4
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Observations and Summary Thoughts

● Surrogate models are imperative for computational 
tractability of engineering analyses

● Categorical Regression performed very well on problems 
with small numbers of discrete variables/levels

● ACOSSO performs very well overall

● TGP performance is mixed

– Functions 1, 2:  performs well when it seems to get enough 
function evaluations (few hundred)

● Ability to identify the splits
● Not sufficient to aggregate across discrete levels

– Functions 3, poly:  performs poorly (i.e, high MSE)
● Adaptive methods may lead to improvement
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Observations and Summary Thoughts (2)

● Scalability

– ACOSSO seems the most scalable

– TGP suffers from too large an aggregation across discrete 
levels

– Categorical regression is not scalable

– Is there a difference between scalability across discrete 
variables vs. number of levels?   Test function three 
suggests there might be 

● Further work: 

– Amount of interaction between variables

– Range/nonlinearity of function

– Improving efficiency of TGP and ACOSSO implementations


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

