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Mission needs motivate research in simulation-
based analysis

System Engineers

* Probability of Loss of Assured
Safety if dropped?
* Adjust handling height?

Analysts i

» Use simulation with optimization
and UQ tools?

* Most info from limited number
of simulations?

Algorithm
Developers

http://safetycampus.files.wordpress.com/2008/12/forklift accident with bomb.jpg

* New mathematics and statistics
algorithms?
* Efficient implementations?




( Categorical/discrete variables are finding their
way into engineering and science simulations

» Modeling choices

— Alternate plausible
e models

WATER. TANK

- Choice between multiple

System bolts mate ri a I S

(Picture courtesy of J. Crowell)

= Design choices

PUMP HOUSE

o O

- Material design

WELL

- Operational settings

Water management system
(Picture courtesy of G. Gray)

Key analysis characteristics

Branched tetrapod nanocrystal : Sma” n_umber of variables _
generated by NREL “tetra” code « Simulation based on computationally
(Picture courtesy of . Graf) expensive equation solver
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' Additionally, large-scale "system of systems”
simulations have many discrete variables

POLICY QUESTIONS

- Where would technological

improvements have the

greatest impact on energy?

- What bottlenecks can

critically limit growth of U.S.
energy?

H - How might shifts in world

ANALYSIS TOOLS

- Minimize costs

- Manage risks

- Enumerate system trade-offs

- Quantify impact of data
uncertainties

Transportation Network

Planning Electrical Power
Water Resource Mngmt

climate impact the availability
and reliability of energy?
Future :
Transp. Infr. Capacity
Demand Power CapacityJ [ for Fuels Wat_er Pse
Investments Water Projections
Demands
) \“

Large-scale models
decomposed into
constitutive system
models

Black-box model of
actor behavior,
independent
subsystems making
choices based on input
from others

Key analysis characteristics

- Large number of discrete and continuous variables
» Objective based on composition of heterogeneous models




Would like to use surrogate models to improve
tractability of simulation-based analysis

Optimization and UQ methods are computationally
expensive

However, in mixed variable spaces...

Usual surrogate assumptions no longer hold

Continuous inputs
How output varies as input varies

Mixed variable surrogate approaches untested
Need a good testbed

Goal: Evaluate and compare mixed variable
surrogate modeling approaches.




Approach 1: Categorical Regression

Uses indicator functions for categorical variable levels
Y=B,+ B,X, + B,X,where X, is continuous, X, is binary
Y=[3,+ B,X, for X,=0, Y=[3,+ 3, X, + 3, for X,=1
Results in 2 different models

Computationally expensive

Need enough samples over continuous variables for EACH
discrete combination for accurate regression function

Increase number of discrete variables + increase number of
“levels” per variable => combinatorial explosion



Approach 2: Treed Gaussian Process (TGP)

height=4, log(p)=1052.57

x5 <=0

%3 <=0 @D

x6 <=0

0.8086
70 obs

0.0248
112 obs

0.4598
57 obs

0.2526
61 obs

Gaussian process is a specified
by mean and covariance

TGP partitions space and
constructs GP in each partition

Mixed variable variant allows
partitioning over
categorical/discrete variables

Transforms each variable-level
pair into binary variable

GP constructed at “leaf’ nodes
over only continuous variables

R. B. Gramacy and M. Taddy. ‘“Categorical inputs, sensitivity analysis, optimization and importance tempering with
tgp version 2, an R package for treed Gaussian process models.” R manual available at http://cran.r-project.org/, 2009.



http://cran.r-project.org/
http://cran.r-project.org/

Approach 3: Adaptive COmponent Selection and
Smoothing Operator (ACOSSO)

Univariate smoothing spline estimate

Term which penalizes

%,Z"l:[y,- - f(x)T +A£ [/ () dx = roughness

ACOSSO Estimate: fis an additive function
=21,

(D =c.f,(2) =cy...f,(m)) = cmj-icj(x) _0

Term which penalizes
Term which penalizes categorical predictors

%E[y,. S @F 42 [fj"(xj)]zix/”e"d !

%i[yi—f(x,-)]z+A[w,,-2{j[f;(xj)]dxj} +j[f,,-"(x,,-)]2dxj} 3 wj{iff(x,-)} J

J=1 J=ag+l

C.B. Storlie, J.C. Helton,, B. J. Reich, and L.P. Swiler. “Analysis of Computationally
Demanding Models with Qualitative and Quantitative Inputs.” Draft manuscript.

——————




We established requirements for a testbed

Fast running evaluations
Easy to compile, cross-platform compatibility
Extendable

File input/output

Scalability of function in terms of number discrete
variables and/or levels per variable

Ability to control problem complexity

10



Testbed includes three defined functions

3.5(x, +0.5)*if x, =1] [ sin(27x, — ) + 7sin 2(2mx, — z)if x, =1 ]
0.5(x, +0.5)*if x, =2 sin( 2mx, — )+ 7sin *(2zx, — ) + 12 sin(2mx, — m ) if x, =2
y=h(x)=42.5(x, +0.5)*if x, =37 Y = fo(x) =14 sin(2zx, — ) + Tsin*(2mx, — )+ 0.5 sin(2zx, - w)if x, =3 ¢
0.7(x, +0.5)* if x, =4 sin( 27x, — ) + 7sin*(2zx, — ) + 8 sin(2zx, — x)if x, = 4
| (x,+05) if x =5 sin( 27x, — 7) + 7sin*(27x, — 7)) +3.5sin(2zx, —7) if x, =5
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Scaled number of variables and number of levels per discrete variable.
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Testbed also includes a random polynomial
generator

Generates a random polynomial

Degree between 2 and 6
Number of variables between 1 and 15

Uses a system of linear equations to solve for the
random coefficients, described in:

McDaniel, W. R. and B. E. Ankenman, “A Response

Surface Test Bed.” Qual. Reliab. Engng. Int. 2000; 16:

363-372

Can control the degree of nonlinearity, range of
polynomial values, etc.

12



We applied the same evaluation process to all
candidate surrogates using these test problems

Looked at surrogate performance over varying
number of build points (LHS sample points)

Used mean squared error (MSE) as a measure of
goodness

Calculated over a grid (dimensioned based on the
number of inputs)

Categorical Regression run in DAKOTA

Generate a separate continuous surrogate for each
combination of discrete variable values/levels

TGP and ACOSSO runin R

13



Observations after first set of preliminary
experiments were enlightening

Categorical Regression performed very well on problems with
small numbers of discrete variables/levels

ACOSSO performed very well overall

TGP performance was mixed
Ability to identify the splits
Not sufficient to aggregate across discrete levels
Adaptive methods may lead to improvement

ACOSSO seemed to be the most scalable with respect to
number of variables and discrete levels

Need to further investigate the effects of parameter interactions
14



Results: Goldstein-Price Function

» Function of 2 variables that ranges over six orders of
magnitude

o Y=(1+(x1+x2+1)2%(19-14x1+3x12-
14x2+6x1x2+3x22)*(30+(2x1-3x2) 2*(18-32x1)+12x12+48x2-
36X1Xx2+27x22)) PR
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Results: Goldstein-Price Function

Actual Function

Number Build Points | MSE TGP | MSE ACOSSO
50 3.87E+07 2.42E+07
100 3.89E+04 9.67E+06
150 2.50E+03 6.67E+06
200 9.51E+01 5.33E+06
250 4.39E+01 1.55E+06
300 2.20E+03 2.14E+04
Log Scaled Function
Number Build Points |MSE TGP MSE ACOSSO
50 4.051E-01 | 1.164E-01
100 1.036E-02 | 5.991E-03
150 7.236E-03 | 8.764E-03
200 1.778E-04 | 3.718E-04
250 5.379E-03 | 1.803E-04
300 1.080E-02 | 3.208E-07

TGP performs better
with the large range of
output, because it can
partition and create
different GPs over
different parts of the
space. Inlog space,
ACOSSO performs
better.

16



Results: Goldstein-Price Function

height=3, log(p)=1789.9

x2 <> 0
x3 <> 0 @
0.1378
79 obs
1 2
0.0184 0.0183
66 obs 55 obs

’_l

TGP predictions for the three
discrete levels, as a function of the
continuous one

TGP partitioning over
levels of discrete

variables S —— S
1 0 1 2 2 1 0 1 2
x1 %1
\\_——l— — e — S SRR
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2e+05

Z mean z quantile diff (error)
8 o @ o
&og)% o @ o
(8]
o il o 0 Omoog’& e ¥
e° P
\/ 8 = _ 0 00
wn o]
b o]
a0
®
o} =
0 g
@
° = 2 |
T 2
© o
= o
§ o B
& &




Results: 3rd-order Polynomial

10 terms, significant interaction

We looked at two aspects: increasing the magnitude of the
overall function (shifting it up or down from on the order of -2

below to -200K) and increasing the range (by multiplying by
factors of 10) :

18



Results: 3rd-order Polynomial

Shift Factor: 10 Scale Factor: 100
Build Points TGP: ACO0SSO Build Points TGP ACOSSO
50 1.02E-08 8.97E-07 50 6.03E-05 5.84E-03 A
100 3.05E-11 1.61E-08/\ 100 1.99E-06 3.30E-04
150 3.95E-12 1.46E-10 150 4.29E-07 1.36E-06
200 1.75E-12 1.11E-10 200 3.56E-07 7.56E-07
250 9.60E-13 2.81E-10 250 7.71E-07 1.69E-06
300 3.65E-12  8.75E-12 300 3.28E-07 2.42E-07
Shift Factor: 10000 Scale Factor: 100000
Build Points TGP: ACOSSO Build Points TGP ACOSSO
50 1.02E-02 | 8.97E-01 50 6.03E+01 5.84E+03 <———
100 3.76E-05 | 1.60E-02 100 1.99E+00 3.30E+02
150 3.41E-06  1.45E-04 5 150 4.26E-01 1.38E+00
200 1.47E-06 1.07E-04 500 7.43E-01 8.61E-OL
250 1.07E-06 | 2.76E-04 250 5.29E-01 1.67E+00
Shift Factor: 1M
Build Points TGP: ACOSSO TGP has better performance in all cases,
50 1.023E+02 8.965E+03 <J_ regardless of whether the function is shifted or
. Ca Ty R e scaled, especially at with fewer build points.
. - . + - H
500 : 781E-02| 1 119E+00 TGE performs better with larger function
250 9.826E-03 2.411E+00 variations.
300 3.894E-02 9.024E-02




Results: Simple Function 10x1x2"2

* We thought this would be trivial

* The constant line at x1=0 proved to be pathological for
TGP

x X

20



Results: Simple Function 10x1x2"2

TGP has an option called “basemax” for mixed categorical/continuous variables.

Basemax allows you to specify which variables are used to construct the GP at the leaves of
the partitioned tree. Typically, basemax is used to specify the continuous variables: the tree
can partition over categorical but the GP is only built on the continuous variables.

In the case of this function, X2 is not predictive when X1=0. So, TGP fails in this case
(constant MSE of around 4 regardless of number of build points)

It can be remedied by not specifying basemax, but then the GP is built based on both the
continuous and categorical variables, essentially treating the categorical as continuous. This
usually is not the behavior we want.

TGP with no

Build Points TGP basemax specified ACOSSO
50 4.28E+00 5.97E-06 4.71E-05
100 4.20E+00 5.04E-08 2.80E-06
150 3.71E+00 1.55E-08 2.84E-05
200 3.45E+00 1.32E-08 3.62E-07
250 3.56E+00 1.91E-08 1.71E-07
300 3.88E+00 *E 1.49E-07

21



Results: Simple Function 10x1x2"2
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TGP gets the prediction for X1=-1, but cannot
resolve the difference between X1=0 and
X1=1. It does try to split over the continuous
variable as well as the discrete, but this
doesn’t help.
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Results: Variation on 10x1x2"2

» Change line y=0 at x1=0 to y=-x2 at x1=0

Zmean

* TGP has no problem in this case

X1=-1 N B
— foo
/ §
/ %
E g= 0
]
: q
!
, 4
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0
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-1 -0% -08 -07y -06 05 -04-03 -02-01 0 01 02 03 04 05 06 07 08 08 1 1




Results: 4th-order Schittkowski function

* Y =100(x2-x172)"2 + (1-x1°2)
« Shows both interactions and scale effects

Scale Factor: 100

X X X X X

Build Points

O
Yoo
Yo
Yoo
Yo.
Yoo

TGP
T aYE-n
Y. A9E--
¢ YAE-+
Y. o1E-
V. YYE-»
Y. YAE-»

o
1
Y
Y
Y
Y

ACOSSO
O ASE-»
YYE-»
Y.YTE-
V. oME-»
Y V4E-»
Y EVE-»

< A < e

Scale Factor: 100000

Build Points TGP ACOSSO

o0 T YE+e) O ALY
Yoo ).A9E4es TYeE4eY
Vou £ YTE-+) ) YAE4:+
Yoo VUEYE-) AIE-)
You O YAE-+) ) IVE4+-
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Observations, the sequel

Surrogate models are imperative for computational tractability
of engineering analyses

ACOSSO continues to have the most consistent performance

TGP is best performer for problems with responses that vary
over large orders of magnitude

Indications are that TGP handles interactions better, but this
still needs further exploration

Still need to investigate

Degree of variable predictivity needed for TGP
Effects of degree/type of nonlinearity
Improving efficiency of TGP and ACOSSO implementations 25
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Surrogate models improve computational tractability
(Queipo, Haftka, Shyy, Goel, Vaidyanathan, and Tucker (2005))

Response surface models

Draw data from simulation

Fit fast approximation to data

Reduced-order models

Reduce the number of variables

Principal component analysis, proper orthogonal decomposition,
dimensionality reduction

Multi-fidelity models
Coarsen the discretization

Reduce the amount of geometric detail

Reduce the amount of physics included
Stochastic expansion

Build global approximation as function of uncertain variables 28

Polynomial chaos, stochastic collocation




One of our favorite response surfaces is the
Gaussian process

Specified by mean and covariance
Vanilla covariance function

Ch, (lexz) =0’ eXp{—ZPf(X: - X?)z}
0 and p. found by maximizing likelihood function

—n 1 1
L=—1loe(2x)——log(det(C))——z'C 'z
5 g(2x) 5 g(det(C)) 5

Key feature: Estimates both mean behavior and variance.

29



Approach 2: Treed Gaussian Process (TGP)

Gaussian process is a random process specified by mean and
covariance functions

Mixed variable variant allows partitioning over categorical/discrete
variables

Transforms each variable-level pair into binary variable
GP constructed at “leaf” nodes over only continuous variables

Alternate approach has explicit representation of categorical
variables in GP

P. Qian, H. Wu, and C.F.J. Wu. “Gaussian process models for
computer experiments with qualitative and quantitative factors.”
Technometrics, 50(3):383—-396, 2008.

Recommend isotropic correlation structure

30
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Testbed: Test Function 1

o x1=1
o x1=2
O x1=3
o x1=4
@ x1=h

5 y = fi(x) =+

(3.5(x, +0.5)"if x, =1]
0.5(x, +0.5)*if x, =2
2.5(x, +0.5)"if x, =3
0.7(x, +0.5)"if x, =4

'

\ (x, +0.5)*if x, =5 )




Testbed: Test Function 2

[ sin(2mx, — ) + 7sin*(2mx, — ) if x, =1 ]
sin( 27zx, — )+ 7sin*(2mx, — ) + 12 sin 2mx, — ) if x, =2
y = (%) =1 sin(2zx, — )+ Tsin*(2mx, — )+ 0.5 sin(2zx, — 7)if x, =3

sin( 27x, —7r)+7sin2(27rx2 —7w)+8sm(2mx, —w)if x, =4

| sin(27mx, —7) + 7sin’(2mx, —m)+3.5sin(2nx, — ) if x, = 5,

8 ) o o
o
o x1=1 (o] o
o x1=2 OOCP % o
2 oo
L © x1=3 4 & @
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Testbed: Test Function 3

v= A0 =Y 0=

Initially started with 4 variables
2 continuous on [0,2]
2 discrete with values [0,1,2]
Easy to scale up number of levels
Scaled number of levels to 5, with values [-1,0,1,2,3]
Easy to scale up number of discrete variables
Scaled up to 5 discrete variables, with 3 and 5 levels
Can also explore symmetry and function separability

33



W e P—— E— —

Test Function 1: Categorical regression works
quite well, especially using GP

CR-neur al network CR-linear polynomial TGP

CR-cubic polynomial CR-GP w/quadratic trend ACOSSO
1.00E+03
1.00E+00
1.00E-03 [l:|
H 50
1.00E-06 100
. . (7150
M 200
B 250
1.00E-09 7 300
1.00E-12
1.00E-15
1.00E-18

34
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Test Function 2: All approaches have trouble

1.00E+03

1.00E+00

1.00E-03

1.00E-06

1.00E-09

1.00E-12

1.00E-15

1.00E-18

resolving the categorical levels

----- al network CR-linear polynomial TGP
CR-cubic polynomial CR-GP w/quadratic trend ACOSSO

W 50

B 100
1150
B 200
W 250
1 300

35



Aggregation of categorical levels in TGP may be
a disadvantage

height=4, log(p)=1052.57

TGP does not fully
partition over all discrete
variables

! Premise was that it would

0085 be sufficient to create
surrogates over partitions

3 which aggregrate the

57 obs discrete variables

2 Perhaps too coarse,

112 obs o1 obe resulting in inaccurate
surrogates

36




( Test Function 3: Categorical regression starts
to degrade with slight increase in dimension

CR-neural network CR-linear polynomial TGP
CR-cubic polynomial CR-GP w/quadratic trend ACOSSO
1.00E+03
1.00E+00 -:1] 11 N
1.00E-03
H 50
1.00E M 100
.00E-06 7150
M 200
B 250
1.00E-09 7 300
1.00E-12
1.00E-15
1.00E-18

N e ——
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Test Function 3: TGP scales better with number
of discrete variables than number of levels

Scaling up discrete levels from 3to 5

Scaling up discrete variables from 2 to 5

Test Function 3 SYMMETRIC - TGP

Discrete 2 [0-1-2] 2 [-1-0-1-2-3] 5 [0-1-2] 5[-1-0-1-2-3]

Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]
50 0.7217199 119.75 1.38 319.22
100 0.03391995 57.15 0.79 300.08
150 0.01617074 25.94 0.87 272.76
200 0.00631333 25.26 0.72 265.96
300 4.45E-05 17.91 0.52 231.41
500 1.74E-06 1.27 0.32 223.68

MSE decreases more quickly for more discrete variables
vs. an increased number of levels per variable.




Test Function 3: Same trend holds for
ACOSSO, though it still performs well

Scaling up discrete levels from 3to 5

Scaling up discrete variables from 2 to 5

Test Function 3
Discrete
Continuous

50

100

150

200

300

500

2 [0-1-2]

2[0,2]
1.20E-04
9.31E-06
1.50E-06
1.75E-07
3.17E-07
7.69E-08

2 [-1-0-1-2-3]
2[0,2]

8.15E-04
1.55E-03
1.34E-03
3.20E-06
4.68E-05
3.08E-04

SYMMETRIC - ACOSSO
5[0-1-2]
2[0,2]

2.24E-04
6.27E-06
2.01E-06
6.97E-07
1.31E-07
8.56E-08

5[-1-0-1-2-3]
2[0,2]

2.56E-01
4.06E-06
2.56E-04
1.99E-03
5.24E-05
2.14E-05

MSE decreases more quickly for more discrete variables
vs. an increased number of levels per variable.

39



Test Function 3: Asymmetry has more adverse
effects on TGP than ACOSSO

Scaling up discrete levels from 3to 5
Scaling up discrete variables from 2 to 5

Function is now asymmetric

Test Function 3 TGP ACOSSO

Discrete 2 [1-2-3] 2 [1-2-3-4-5] 2 [1-2-3] 2 [1-2-3-4-5]

Continuous 2[0,2] 2[0,2] 2[0,2] 2[0,2]

50 53.53 11843.35 3.67E-03 0.34

100 0.62 2444.52 1.96E-03 0.18
150 0.26 3402.73 3.27E-04 0.12
200 0.15 4494.97 9.94E-04 0.07
300 0.02 2382.42 3.55E-06 0.03
500 0.01 0.39 5.78E-04 0.06

Separability and lack of variable interactions, particularly between
discrete and continuous, may be playing to the strengths of ACOSSO. 40




( Polynomial Function: Categorical regression
performs quite well, followed by ACOSSO

« 2" order polynomial with 4 variables

- 2 discrete variables at levels [20,50,80]

- 2 continuous variables between 0 and 100

CR-neural network CR-linear polynomial TGP

CR-cubic polynomial CR-GP w/quadratic trend ACOSSO
1.00E+03
1.00E+00 —-j—ﬂ ‘
1.00E-03
M 50
M 100
1.00E-06 7150
M 200
M 250
1.00E-09 7 300
1.00E-12
1.00E-15
1.00E-18
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Polynomial Function: Complexity has more
adverse effects on ACOSSO than TGP

“Scaling” Problem Complexity

2nd order polynomial with 14 terms
3rd order polynomial with 24 terms
4th order polynomial with 19 terms

10 discrete levels (instead of 3)

Test Function Poly ¥ Test Function Poly 3 Test Function Poly ¢
TGP ACOSSO TGP ACOSSO TGP ACOSSO
Discrete 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels]
Continuous 2[0,100] 2[0,100] 2[0,100] 2[0,100] 2[0,100] 2[0,100]
50 28.88 12.24 25.16 9.12 10.07 29.98
100 28.58 0.46 25.00 4.92 10.25 5.14
150 27.83 0.15 21.94 2.31 13.16 6.03
200 21.80 0.05 16.31 1.91 9.99 5.03
250 24.92 0.06 11.58 2.37 10.40 5.16
300 22.78 0.03 9.49 1.77 8.76 5.20

Possible increase in variable interactions and increased relative impact of | 4,
continuous variables may be playing to the strengths of TGP.




Observations and Summary Thoughts

Surrogate models are imperative for computational
tractability of engineering analyses

Categorical Regression performed very well on problems
with small numbers of discrete variables/levels

ACOSSO performs very well overall
TGP performance is mixed

Functions 1, 2. performs well when it seems to get enough
function evaluations (few hundred)

Ability to identify the splits
Not sufficient to aggregate across discrete levels

Functions 3, poly: performs poorly (i.e, high MSE) “
Adaptive methods may lead to improvement



Observations and Summary Thoughts (2)

Scalability

ACOSSO seems the most scalable

TGP suffers from too large an aggregation across discrete
levels

Categorical regression is not scalable

Is there a difference between scalability across discrete
variables vs. number of levels? Test function three
suggests there might be

Further work:

Amount of interaction between variables

Range/nonlinearity of function y

Improving efficiency of TGP and ACOSSO implementations
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