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Goals
Advantages and Disadvantages
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Goal of CO2 Reactor Design Study

Goal – Determine if a direct cycle, supercritical CO2 cooled, fast reactor 
could be designed to be cost effective, maintain natural circulation 
decay heat removal, and last 20 years at 200 MWth (100 MWe)  

• Direct Cycle
No primary heat exchanger.  CO2 coolant in the reactor is the same as in the 
power conversion system.

• Cost Effective
plant + power conversion system + pressure vessel + fuel  < $5000/kWe  

$500M at 100MWe
$1,000M at 200MWe

• Natural Circulation Decay Heat Removal
Remove 1% of the steady-state operating power level though the power 
conversion system or auxiliary system with an acceptable T through the 
reactor with no mechanical pump operating.

• 20 Years at 200 MWth
Burnup in fuel/clad limited to an acceptable level (72,000 MWD/MT ?).
Reactivity change over core lifetime minimized.
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Advantages and Disadvantages
Major Advantages -
• Natural circulation flow can allow for decay heat removal for loss of flow condition.
• Fast spectrum allows for effective breeding (conversion) and with the right geometry, a 

small reactivity swing over the core lifetime.
• Small void coefficient of reactivity (<$1.00).
• Proven coolant (CO2), fuel (oxide), and cladding (Cr-Ni-Fe-Nb) steels.
• Can use simple fuel rod design and core design.
• Coolant is inexpensive, relatively chemically inert, and is not flammable.
• Long blow down times for postulated leaks and large breaks.
• Pressure vessel can be made small (~2 - 2.5 m diameter) to allow for replacement of core 

and PV as a single unit, if desired.
• Minimal infrastructure development.
• Supercritical cycle allows for high efficiency at 650C core outlet temperature.
• Lower balance of plant costs due to direct cycle and small size of balance of plant.
• Brayton cycle allows for high-efficiency load following.
• High heat rejection temperature allows for efficient use of cooling water.

Major Disadvantages -
• High pressure required, ~20 MPa (3000 psi) – (could potentially be lowered)
• Engineered safety feature required for decay heat removal for loss of coolant accident due 

to large or small pipe break.
• Fission product isolation and buildup on cold components.
• Stainless-steel components required for corrosion minimization for CO2 at high 

temperature.
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Fast Gas, CO2 and S-CO2
Reactor Concepts
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Commercial CO2 Reactors

CO2 Cooled  Reactors (not supercritical, not direct cycle, thermal)
52 operated – 41 UK, 8 France, 1 Italy, 1 Japan, 1 Spain
14 AGRs, 4 Magnox still in operation

Magnox – UK and France (UNGG-independent and parallel), 1956
• Graphite moderated, U metal natural enriched
• Clad pin bundles in graphite matrix – online refueling
• Magnox from magnesium alloy cladding
• Secondary steam Rankine cycle
• Tout = 414°C, 1 W/cc, 5,500 MWD/MT, 200-500 MWe, 30% eff
• Pre-stressed concrete pressure Vessel with steel liner
• Pressure = 0.59 MPa (100 psia)

AGR – UK 1963
• Graphite moderated, UO2 slightly enriched
• Clad pin bundles in graphite matrix – online refueling
• Stainless-steel cladding
• Secondary steam Rankine cycle
• Tout = 650°C, 2 W/cc, 24,000 MWD/MT, 555-625 MWe, 40% eff
• Pre-stressed concrete pressure Vessel with steel liner
• Pressure = 4.33 MPa (640 psia)
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AGR Design
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CEA Japan CO2 GFR

CO2/He GFR Pre-stressed
Concrete PV

BNFL

INL
MIT



10

Super Critical Cycle
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Today’s technology provides significant potential for 
improvement in cycle efficiency

Cycle Efficiencies

Cycle Efficiencies vs Source Temperature 

for fixed component efficiency
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S-CO2 Brayton Cycle With Split Flow
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Reference Core
and

Conceptual Plant Layout
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Baseline Reactor Concept
Baseline reactor and assumptions

200 MWth and 400 MWth with 20 year core lifetime.

0.75 cm OD fuel pin, cf = 0.2  (PWR ~ 1 cm OD, cf = 0.5)
and
1.20 cm OD fuel pin, cf = 0.3

UO2 fuel, clad thickness = 0.0056 cm SS, gap = 0.008 cm
Initial fuel loading is 12% U-235

Reactor inlet temperature = 450°C
Reactor outlet temperature = 650°C

Reactor pressure (CO2) = 20 MPa = 3000 psi

Core 1.7 m Dia. x 1.6 m H with 15 cm Ni reflector
Power density = 55 W/cc core at 200 MW

Desired Objectives

Minimal reactivity swing over core lifetime
Core pressure drop less than 1% total power
Small reactivity void coefficient
Acceptable clad and fuel peak temperature
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MCNP Model of Core
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Split Flow With Combined 
Turbine/Generator/Compressor

Reactor

Turbine/Compressor/Generator

High Temperature
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Rejection
Heat Exchanger

~7 m3

Split Flow

This approach would generate higher frequency (300 Hz) 
electricity unless the generator was geared down for 60 Hz output. 

Not to Scale
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Split Flow With Separate Turbine/Generator 
and Turbine/Compressor

Reactor

Turbine/Generator

Turbine/Compressor

High Temperature
Heat Exchanger
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Heat Exchanger

Rejection
Heat Exchanger

Split Flow

Not to Scale

This approach would generate 60 cycle power in the 
separate turbine/generator unit.  

The turbine compressor would still maintain a high 
frequency motor generator for speed control. 
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Split Flow With Two Turbine/Generators 
and Turbine/Compressor

Reactor

Turbine/Generator

Turbine/Compressor

High Temperature
Heat Exchanger

Low Temperature
Heat Exchanger

Rejection
Heat Exchanger

Split Flow

Second Turbine/Generator

This approach would use a second turbine/generator after 
the high temperature recuperator to reduce the pressure 

in the reactor vessel with only a small penalty in efficiency. 
(Muto and Kato)

Not to Scale
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Layout Showing Possible Locations 
for Pressurizer/Accumulator

Accumulator/
Pressurizer

Emergency
Core Cooling

System

An Accumulator/Pressurizer would probably be required to 
maintain the desired pressure in the system from startup 

to full power conditions.

An emergency core cooling system and/or a decay heat 
removal system could be added near the inlet and outlet 

to the reactor. 
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Heat Transfer and Thermal Hydraulics
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Thermal Hydraulics Parametric Analysis

Parametric Analysis Assumptions

200 MW and 400 MW
Reactor inlet temperature = 450°C
Reactor outlet temperature = 650°C
Reactor average coolant temperature = 550°C
Reactor pressure = 20 MPa = 3000 psi
clad thickness = 0.0056 cm HT9, gap = 0.008 cm He
Core 1.7 m Dia. x 1.6 m H – additional height for plenum

MATHCAD SS-T-P Results

Parametric analysis for maximum fuel temperature and pressure 
drop performed as a function of coolant fraction and pin diameter.

0.75 cm dia 0.2 cf and 1.2 cm dia 0.3 cf
Both have about same fuel/core ratio of 0.55 
At 200 MW both work
At 400 MW pp is much higher for 0.2, temps much higher for 0.3 
Flow rate (200 MW) = 900 kg/s = 5,600 Liters/s
Density in reactor = 0.146 g/cc
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200 MWth Temperature Analysis
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200 MWth Flow Analysis
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Keff, Burnup, and Void Coefficient
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Reactor Burnup Calculations

Keff, Burnup, and Void Coefficients calculated using MCNP
Burnup using BURNCAL (MCNP and Tallies)
Simple calculations performed to-date using one zone
Trade off reactor size, coolant fraction, and enrichment to maintain a 

constant Keff over the operating history.

UO2 fuel, 12% en, clad thickness = 0.0056 cm HT9, gap = 0.008 cm
1.7 m dia x 1.6 m H, 15 cm Ni Reflector

Core Size 

Case 1 - 0.75 cm OD, cf = 0.2
Core Vol = 3.63e6 cm3
f/c=0.550
Fuel vol = 2e6 cm3 ~20 MT
55W/cc core = 200 MW

Case 2 - 1.20 cm OD, cf = 0.3 
Core Vol = 3.63e6 cm3
f/c=0.5586
Fuel vol = 2e6 cm3 ~20 MT
55W/cc core = 200 MW
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MCNP k Infinity vs. Operating Time
U-235 UO2 20%v CO2 50 MW/MT
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a small change in reactivity over a 
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MCNP k effective vs. Operating Time
12.0%U-235 UO2 20%v CO2 200 MW
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For a finite core with 0.2 cf and 0.75 cm 
diameter fuel pin,

~12.0% enrichment works.  A relatively 
small reactivity change over time is 
sustainable (k=0.01) at 200 MW.

Fuel burnup would be 72,000 MWD/MT



28

Fuel Constituent Density
MCNP Fuel Density vs. Operating Time

12.0%U-235 UO2 20%v CO2 200 MW
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Reactivity Void Coefficient

Void Coefficients calculated using MCNP at 20 MPa (3000 psi) and 0.1 MPa 
(14.7 psi) pressure and 550°C temperature gas.

From Lewins – Fast Fission - (U-235) = 0.0066

(U-238) = 0.0161

(Pu-239) = 0.00212

Estimates for the delayed neutron fraction 
 BOL = 0.0080

 EOL (200 MW @ 20 yrs) = 0.0062

 EOL (400 MW @ 20 yrs) = 0.0052

Case 1 - 0.75 cm OD, cf = 0.2

k/k (BOL) = 0.00185 ± 0.0016  = +$0.23 ± $0.20

k/k (200MW@20yrs) = 0.0020 ± 0.0015  = +$0.32 ± $0.24

k/k (400MW@20yrs) = 0.0015 ± 0.0013  = +$0.29 ± $0.25

Case 2 - 1.20 cm OD, cf = 0.3

k/k (BOL) = 0.00056 ± 0.0015  = +$0.07 ± $0.19

k/k (200MW@20yrs) = 0.0057 ± 0.0015  = +$0.92 ± $0.24

k/k (400MW@20yrs) = 0.0040 ± 0.0014  = +$0.76 ± $0.27
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Natural Circulation Flow
And

Decay Heat Removal



31

Natural Convection Flow
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Not to Scale

Inventory Control H hot leg

H cold leg
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Natural Circulation Summary

• Developed Simple Scoping Calculation Models in Excel

– Based on theory described by D. Milone

– Validated against experiments in a ½” OD Loop 72” Tall

• Modified Scoping Model to Apply it to 

– Reactors, Heat Exchangers, Gas-Chiller

– Evaluated Proposed SNL Experiment

• Developed a 3 D CFD model by modifying a fire code C3D

– Implement Nist Calls

– Modified Energy Equation to use Enthalpy

– Verified against D. Milone Report

– Explored Natural Circ in Rx, with HXs and with Gas 
Chiller
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Background
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Conditions for Natural Circulation

CO2

7 MPa = 1030 PSI
Pressure at Low Side
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Lumped Parameter Analysis (2.8 MW decay 
heat source)

324.017

1378.52

K

Pa

559.26

2098.87

K

Pa

538.87

2007.56

K

Pa

315.00

1185.14

K

Pa

2800 kW

35604 kW

121.94

20 m

10 m

Gas Chiller

Reactor/Heater

Recuperator

2800 kW

kg/s

7584.5 kPa



36

CD3-SC Natural Convection Flow
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Natural Circulation Conculsions

• Large amounts of natural circulation occur in S-CO2

– Need a sufficiently large elevation difference between 
the gas chiller and the heat sourcs (10 m)

– Pressures need to be kept near the critical pressure

• (5-12 MPa)

– HXs/Recuperators do not destroy the ability for natural 
circulation

– Pressure drop is important large dPs must be avoided 

• e. g. turbine and compressor 

• If large dP’s exit they can be bypassed

– There is sufficient flow to remove decay heat given 
proper design

– SNL now has tools to evaluate S-CO2 Natural 
Circulation

• Both scoping and CFD codes

• So effect on reactor can be modeled
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Economics
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Cost Estimates

Initial Core Loading Fuel Cost (20 MT, 12% enriched = 7,500$/kg) = $150M
- future cores with Pu recycle would be expected to be much less

HX cost (2 recuperators and 1 heat rejection = 20 to $50M

Pressure Vessel and Piping = $50M

Total = $250M

At $5,000/kW a 100 MWe system would cost $500M
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Summary

• From the analyses that we have preformed so far, we 
believe that the direct cycle, S-CO2 cooled, fast reactor 
concept is worth further study.  

• The concept is simple and relatively straight forward.  We 
have shown that a reactor power of 200 to 400 MWth is 
achievable with a reactivity burnup lifetime of potentially 
up to 20 years.

• The concept has many advantages over other advanced 
reactor concepts.  The reactor can be cooled by natural 
circulation flow in the event of a loss of flow condition.  

• The major disadvantages are the high pressure of the 
reactor coolant and the corrosion at high temperatures.  
The pressure can be lowered significantly without a large 
penalty in efficiency using a slightly different cycle 
configuration, and will be studied in future work.   
Corrosion issues requires further experimental work. 


