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What Is Random Projection?

Formally, random projection establishes conditions when the following
inequality holds

(I=-allx =yl <lex=y)l < (T +e)llx -y
Traditionally, x,y € R" and ¢ € Z(R",R™).

If random projection involves two inequalities, why do we call it random
projection?
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Origin of the Name Random Projection

@ Imagine a situation where we have 5 points in R? where we
interested less in the data and more in the pairwise distances
between data points.

Pt

@ We halve the amount of data that we need to process if we can
project our data from R? into R. In order to accomplish this, we
project the data onto a random plane in R?.

Pyt

@ Then, we only consider the pairwise distances of the projected data
in RL.
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Two Important Theorems for Random Projection: |

Theorem (Johnson-Lindenstrauss, 1984)

Let € € (0,1) be given. For every set P consisting of k points in RP, if q
is a positive integer such that q > O(e~2log(k)), there exists a Lipschitz
mapping f : RP — RY such that

(L= )lu— VI3 < [If(u) = FWIZ< (@ +e)llu—vi3

for all u,v € P.

This states that a well behaved mapping exists so that the pairwise
distances between points remains bounded.
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Two Important Theorems for Random Projection: Il

Theorem (Achlioptas, 2001)

Let e € (0,1) and 3 > 0 be given. For every set P consisting of k points
in RP, if q is a positive integer such that

4428

> T ogk,
€2/2 —e3/3 8
and ® € R9*P js chosen where either
. . +1 with probability 1/6
¢U:{ —l—i with pr’c’)bablllty i?g ord;=1{ 0 " 23

-1 " 1/2
then we have with probability 1 — k= that
(1 —e)llu—vlZ < [|o(u—v)[5 < (L +e)llu— v}

for all u,v € P.
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Generalization to a Finite Product of Hilbert Spaces
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.
Generalization to a Finite Product of Hilbert Spaces

In order to fix notation, we denote a finite product of some Hilbert space
Y as YP =Y x--- x Y. Then, we define the 2-norm of y in YP as
—_——

P

Iyll2 =

p
> Iyl
i=1

Note, the underlying Hilbert space is general, e.g. L%(Q2) or H}(R) for
some domain €2 are fine. Next, let us define a projection operator on the
product space, ® € Z(YP, YY), so that

ol .. Pl
Pqil ... Pgpl

In other words, ® = ¢ ® | where ¢ € RI*P,
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Generalization of Random Projection to a Product of Hilbert
Spaces

Theorem (Young and Ridzal, 2011)
Let e € (0,1) and 3 > 0 be given. For every set P consisting of k points
in YP, if q is a positive integer such that

4424
> —————logk,
€2/2 —e/3 8
and ® = ¢ ® | where ¢ € RI*P s chosen where either
+1 with probability 1/6
0 " 2/3

-1 " 1/2

+1 with probability 1/2
Pij = { ~1 " 1?2 or ¢ij =

then we have with probability 1 — k= that
(1= e)llu— vz < [|o(u—v)[5 < (1 +e)llu— v

for all u,v € P.
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Application to Parameter Estimation
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Application of Random Projection to Parameter Estimation

Let Ac Z(U,.Z2(Y)) and B € .Z(Y) be two differential operators so
that A(u) + B is invertible for some set of parameters u € U. For
example, in Poisson’s equation, we have that

A(u) = -V - (uVy) B=0.

Then, let us define the block operator A,(u) € Z(U, Z(YP)) where

and we define B, € Z(YP) analogously.
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Application of Random Projection to Parameter Estimation

Consider the parameter estimation problem

. 1< ) .
arg  min {22”}4’—61,-” :(A(u)—i—B)y,-—b,-,/—l,...,p}.

uel,yeYr

Let us rewrite this in block form as

. 1 ) -
arg _min {2||y —d|?: (Ap(u) + By)y = b} .

This is known as the full-space formulation. In the reduced-space
formulation, we solve

1 —1 2
srg iy { 31(4,(0) + 8,) 6~ a2}
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Application of Random Projection to Parameter Estimation

A direct application of random projection to the reduced objective
function from parameter estimation gives

(1= )l (Ap(u) + Bp) b — d|5 <
1((Ap(u) + Bp) b — d)|I3 <
1+ 6)lI(Ap(u) + Bo) b — d|I3

This tells us that the objective value from the projected problem lies
within a constant factor of the objective value from the unprojected
problem. Further, we have that

1®((Ap(u) + Bp) ' — d) 13 = [[(Aq(u) + Bq) "' @b — &d][3

This tells us that we require g PDE solves in the projected problem
rather than p.
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Application of Random Projection to Parameter Estimation

Theorem (Young and Ridzal, 2011)

Let us define the unprojected and projected objective function as
J:U—RandJp: U— R, respectively, where

J() = S (Ap(u) + B,) b — P

Jo(u) = 3 [(Ag() + Bg) @b — bal|?

and ® is chosen to be either the binary or ternary operator from above
parametrized by 3 and €. In addition, let uy, ux+1 € U be iterates such
that Jo(uky1) < Clo(uk), where C = (1 —€)/(1+€). Then, we have
that J(uky1) < J(uk) with probability 1 — 275,

This tells us that if our algorithm reduces the objective value quickly
enough in the projected problem, then we achieve monotonic decrease in
the unprojected objective value. This is a conservative estimate.
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Computational Study
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.
Application to Poisson’s Equation

In the following set of examples, we solve the problem
g min A2y —dl? -V (uVy) = b =1
r min =y — =V - (uVy;))=b;,i =1,...
gyew,ueLZ(Q) 5 y Yi iy ) y P

where Y = {y € HY(Q) : 7§y = 0} and d, b € L2(Q)P are both given.
We generate the data based on a true set of parameters,

!nm

True
o5
o4
02
o
2|
o

| s
| oo
im«

As sources, we use Gaussians with variance .001 and amplitude 10 spaced
evenly along unit square centered at zero. Finally, we solve the PDE
using a Galerkin finite element method with piecewise linear elements.

Lok b8

Sandia
@ National J. Young The Application of Random Projection to Parameter Estimation 16

Laboratories



Steepest Descent, 50 Iterations, 20 Sources

Solved Parameters. Solved Parameters
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Gauss-Newton, 50 lterations, 20 Sources

Solved Parameters.

Solved Parameters
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Steepest Descent Convergence, Binary Encoding

Steepest Descent Convergence, 100:1
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% Steepest Descent Convergence, 100:10
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Gauss-Newton Convergence, Binary Encoding

Gauss-Newton Convergence, 100:1

-3

Gauss-Newton Convergence, 100:10
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SD v. GN, Binary Encoding

SD (Blue) v. G-N (Red) Convergence, 100:1 SD (Blue) v. G-N (Red) Convergence, 100:10
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Steepest Descent, Binary v.

_, SD Binary (Blue) v. Temary (Red) Convergence, 100:1
0
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Ternary Encoding
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Gauss-Newton, Binary v. Ternary Encoding

_, GN Binary (Blue) v. Temary (Red) Convergence, 100:1 _, GN Binary (Blue) v. Ternary (Red) Convergence, 100:10
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Medium Scale Study, SD v. G-N, 500000 Elements

Solved Parameters

2.081 ’
.

1002 o

0.696 s er as ez

4 08 405 04 02 O

oz 04 06 08 1

Encoding 10:1 Encoding
Iterations 50 Iterations
Time 500s Time

10:1
30
2000s

Comment: As we have seen before, Gauss-Newton violates the
physical bounds more frequently than steepest descent. However,

it matches the peak parameter value more closely.
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Conclusion

@ Random projection extends to a finite product of Hilbert spaces

@ Using random projection, we can reduce the number of PDE solves
required for a reduced space approach to parameter estimation.

o Computational results verify the method works on a model problem.
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