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What Is Random Projection?

Formally, random projection establishes conditions when the following
inequality holds

(1− ε)‖x − y‖ ≤ ‖Φ(x − y)‖ ≤ (1 + ε)‖x − y‖

Traditionally, x , y ∈ Rn and Φ ∈ L (Rn, Rm).

If random projection involves two inequalities, why do we call it random
projection?
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Origin of the Name Random Projection

Imagine a situation where we have 5 points in R2 where we
interested less in the data and more in the pairwise distances
between data points.

We halve the amount of data that we need to process if we can
project our data from R2 into R. In order to accomplish this, we
project the data onto a random plane in R2.

Then, we only consider the pairwise distances of the projected data
in R1.
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Two Important Theorems for Random Projection: I

Theorem (Johnson-Lindenstrauss, 1984)

Let ε ∈ (0, 1) be given. For every set P consisting of k points in Rp, if q
is a positive integer such that q > O(ε−2 log(k)), there exists a Lipschitz
mapping f : Rp → Rq such that

(1− ε)‖u − v‖2
2 ≤ ‖f (u)− f (v)‖2

2 ≤ (1 + ε)‖u − v‖2
2

for all u, v ∈ P.

This states that a well behaved mapping exists so that the pairwise
distances between points remains bounded.
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Two Important Theorems for Random Projection: II

Theorem (Achlioptas, 2001)

Let ε ∈ (0, 1) and β > 0 be given. For every set P consisting of k points
in Rp, if q is a positive integer such that

q >
4 + 2β

ε2/2− ε3/3
log k,

and Φ ∈ Rq×p is chosen where either

Φij =

{
+1 with probability 1/2
−1 ” 1/2

or Φij =

 +1 with probability 1/6
0 ” 2/3
−1 ” 1/2

,

then we have with probability 1− k−β that

(1− ε)‖u − v‖2
2 ≤ ‖Φ(u − v)‖2

2 ≤ (1 + ε)‖u − v‖2
2

for all u, v ∈ P.
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Generalization to a Finite Product of Hilbert Spaces

In order to fix notation, we denote a finite product of some Hilbert space
Y as Y p = Y × · · · × Y︸ ︷︷ ︸

p

. Then, we define the 2-norm of y in Y p as

‖y‖2 =

√√√√ p∑
i=1

‖y‖2.

Note, the underlying Hilbert space is general, e.g. L2(Ω) or H1(Ω) for
some domain Ω are fine. Next, let us define a projection operator on the
product space, Φ ∈ L (Y p,Y q), so that

Φ =

φ11I . . . φ1pI
...

. . .
...

φq1I . . . φqpI

 .

In other words, Φ = φ⊗ I where φ ∈ Rq×p.
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Generalization of Random Projection to a Product of Hilbert
Spaces

Theorem (Young and Ridzal, 2011)

Let ε ∈ (0, 1) and β > 0 be given. For every set P consisting of k points
in Y p, if q is a positive integer such that

q >
4 + 2β

ε2/2− ε3/3
log k,

and Φ = φ⊗ I where φ ∈ Rq×p is chosen where either

φij =

{
+1 with probability 1/2
−1 ” 1/2

or φij =

 +1 with probability 1/6
0 ” 2/3
−1 ” 1/2

,

then we have with probability 1− k−β that

(1− ε)‖u − v‖2
2 ≤ ‖Φ(u − v)‖2

2 ≤ (1 + ε)‖u − v‖2
2

for all u, v ∈ P.
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Application of Random Projection to Parameter Estimation

Let A ∈ L (U,L (Y )) and B ∈ L (Y ) be two differential operators so
that A(u) + B is invertible for some set of parameters u ∈ U. For
example, in Poisson’s equation, we have that

A(u) = −∇ · (u∇y) B = 0.

Then, let us define the block operator Ap(u) ∈ L (U,L (Y p)) where

Ap(u) =

A(u)
. . .

A(u)


and we define Bp ∈ L (Y p) analogously.
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Application of Random Projection to Parameter Estimation

Consider the parameter estimation problem

arg min
u∈U,y∈Y p

{
1

2

p∑
i=1

‖yi − di‖2 : (A(u) + B)yi = bi , i = 1, . . . , p

}
.

Let us rewrite this in block form as

arg min
u∈U,y∈Y p

{
1

2
‖y − d‖2 : (Ap(u) + Bp)y = b

}
.

This is known as the full-space formulation. In the reduced-space
formulation, we solve

arg min
u∈U

{
1

2
‖(Ap(u) + Bp)

−1b − d‖2

}
.
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Application of Random Projection to Parameter Estimation

A direct application of random projection to the reduced objective
function from parameter estimation gives

(1− ε)‖(Ap(u) + Bp)
−1b − d‖2

2 ≤

‖Φ((Ap(u) + Bp)
−1b − d)‖2

2 ≤

(1 + ε)‖(Ap(u) + Bp)
−1b − d‖2

2

This tells us that the objective value from the projected problem lies
within a constant factor of the objective value from the unprojected
problem. Further, we have that

‖Φ((Ap(u) + Bp)
−1b − d)‖2

2 = ‖(Aq(u) + Bq)
−1Φb − Φd‖2

2

This tells us that we require q PDE solves in the projected problem
rather than p.
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Application of Random Projection to Parameter Estimation

Theorem (Young and Ridzal, 2011)

Let us define the unprojected and projected objective function as
J : U → R and JΦ : U → R, respectively, where

J(u) =
1

2
‖(Ap(u) + Bp)

−1b − d‖2

JΦ(u) =
1

2
‖(Aq(u) + Bq)

−1Φb − Φd‖2

and Φ is chosen to be either the binary or ternary operator from above
parametrized by β and ε. In addition, let uk , uk+1 ∈ U be iterates such
that JΦ(uk+1) < CJΦ(uk), where C = (1− ε)/(1 + ε). Then, we have
that J(uk+1) < J(uk) with probability 1− 2−β .

This tells us that if our algorithm reduces the objective value quickly
enough in the projected problem, then we achieve monotonic decrease in
the unprojected objective value. This is a conservative estimate.
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Application to Poisson’s Equation

In the following set of examples, we solve the problem

arg min
y∈Y p,u∈L2(Ω)

{
1

2
‖y − d‖2 : −∇ · (u∇yi ) = bi , i = 1, . . . , p

}
where Y = {y ∈ H1(Ω) : γ∂Ω

0 y = 0} and d , b ∈ L2(Ω)p are both given.
We generate the data based on a true set of parameters,

As sources, we use Gaussians with variance .001 and amplitude 10 spaced
evenly along unit square centered at zero. Finally, we solve the PDE
using a Galerkin finite element method with piecewise linear elements.
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Steepest Descent, 50 Iterations, 20 Sources
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Gauss-Newton, 50 Iterations, 20 Sources
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Steepest Descent Convergence, Binary Encoding
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Gauss-Newton Convergence, Binary Encoding
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SD v. GN, Binary Encoding
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Steepest Descent, Binary v. Ternary Encoding
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Gauss-Newton, Binary v. Ternary Encoding
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Medium Scale Study, SD v. G-N, 500000 Elements

Encoding 10:1
Iterations 50
Time 500s

Encoding 10:1
Iterations 30
Time 2000s

Comment: As we have seen before, Gauss-Newton violates the
physical bounds more frequently than steepest descent. However,
it matches the peak parameter value more closely.
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Conclusion

Random projection extends to a finite product of Hilbert spaces

Using random projection, we can reduce the number of PDE solves
required for a reduced space approach to parameter estimation.

Computational results verify the method works on a model problem.
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