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Foam Nomenclature

Cell Diamete.r
PPl = Pores Per Inch
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~«% Previous modeling relied on periodic
structures.
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e :
s .. We perform CFD modeling of foam porous

media heat transfer on the microscale.

Computerized X-ray microtomography was completed at Sandia on Ultramet
supplied foam samples. The smaller files were translated from stereolithography
format to ACIS solid modeling format.

*The solid models of the detailed foam microstructure were meshed and analyzed
by commercial computational fluid dynamics (CFD) codes (CFDesign and CCM+)
to determine the effective permeability and ligamental heat conduction.

Foam models derived from computerized x-ray tomography were closed with
facesheets of SiC on one side and steel on the other inside CCM+.

The CCM+ tet mesh was exported to Abaqus for stress analysis.

*Deflections, inelastic strains and stresses were computed in the ligaments and
permeation barrier facesheets using Abaqus.

X-ray microtomography
file of carbon foam after
translation to ACIS solid
modeling format.
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Processing geometry and meshing are greatest challenge.

8 mm x 8 mm x 8 mm 45 ppi RVC skeleton

Tomography
*VGStudio MAX by
Volume Graphics

File translation
«3dShop by C4W
*Rhino 3d

*Cubit

A oStar CCM+

% extract a volume
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1 mm thick
solid wall

foam-filled<
channel
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Modeling is computationally expensive.

Commercial CED Codes
*Star-CCM+ v5.04
» Cfdesign v10

One-million element
polyhedral mesh with three
prism layers at all solid/gas
interfaces.

I.7mmx1.7mmXx2.7mm
high. Arbitrarily chosen
volume extracted from
8x8x8 mm=3 volume shown
earlier. Wall added in CCM+.
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Imprint and merge 3 solids and a fluid

3 prism layers at walls and ligaments
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Porous media Is effective In
enhancing gas cooling.

Table 1. Comparison of Foam Effectiveness to Open Channels

Open Channel

Unconnected 45-pp1
W foam

Connected 45-pp1 W
foam

Connected 45-pp1
Cu foam

Temperature (C) Temperature (C) Temperature (C) Temperature (C)
26.586 323.67 620.75 ©17.83 1214.9 1512.0 | 26.584 191.79 357.00 522.21 687.42 852.63 | 26.583 132.50 23841 344.32 450.24 556.15|  26.583 101.48 176.37 251.26 326.15 401.04
Temperature (C) Temperature (C) Temperature (C) Temperature (C)
26.586 323.67 620.75 917.83 1214.9 15120 |26.584 191.79 357.00 522.21 687.42 852.63 | 26.583 132.50 238.41 344.32 450.24 556.15 | 26.583 101.48 176.37 251.26 326.15 401.04
Heat Transfer Coefficient (W/mA2-K) Heat Transfer Coefficient (W/mA2-K) Heat Transfer Coefficient (W/mA2-K) Heat Transter Coefficient (W/mA2-K)
0.00000 15000 54000. 72000, 20000, 0.00000 18000. 36000, 54000, 72000, 90000 0.00000 18000. 54 72000. 90000 0.00000 18000 36000, 54000, 72000. 20000.

h=7100 W/m?K

h=13.200 W/m2K

h=21.500 W/m?K

h=28.350 W/m2K
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- Conductivity of foam can affect

performance.

helium flow of 1 g/s at 4 MPa with an inlet
temperature of 26.8 °C. g"=5 MW/m? on a
1-mm-thick wall.

Calculated temperature distribution in a / He
tungsten open channel duct reveals a peak
surface temperature of 1512 °C with an average
heat transfer coefficient of 7100 W/m2K.
emperature (C)
26.583 132.50 344.32 450.24 556.15

Temperature (C)
26,586 323.67 620.75 217.83 1214.9 1512.0

]

Calculated temperature distribution in a
45-ppitungsten foam channel reveals a
peak surface temperature of 556 °C with
an average heat transfer coefficient of
21,500 W/m2K.

Calculated temperature distribution in a 45-
ppi copper foam channel reveals a peak
surface temperature of 401 °C with an
average heat transfer coefficient of 28,350
W/maK.

9 Temperature (C)
26.583 101.48 176.87 251.26 326.15 401.04
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—

ot Analysis reveals turbulent mixing
and fin effect created by foam.

627 C

—_—
Velocity: Magnitude (m/s)
75.848 113.76 151.68 189.59
Temperature (C) _
y 100.00 220.00 340.00 460.00 580.00 Velocity (m/s)
i N B B 0.00000 387.686 75.373 113.06 150.75 188.43
i D

Convection models for 2 mm x 2 mm 65 ppi, 10% dense moly foam attached to 1 mm thick moly walls. Temperature
distribution is shown on left with velocity vectors and streamlines through the foam on the right.
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5“ Foams can enhance heat transfer in open channels of dual

coolant schemes if the foam is bonded to the intervening wall.

(6] Static Temperature - Celsius
626,85

o Li No Foam

595.6 I

-
(6] Static Temperature - Celsius LI Foam
626.65
Fling

Last Iteration/Step

Load case: 300
Last Iteration/Step
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Refractory heat exchangers are under fabrication.

High temperature Li/He heat exchanger

(6) Static Tem vamm
626,

/
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HX effectiveness
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e aTtal Li/He design concept

- The classic counterflow flat plate heat exchanger can have high specific
area, on the order of 3000 m2/m3. This design can be improved if refractory
foam is added to the gas channels. Molybdenum foam on the order of 65
ppi and 20% dense can have a specific surface area as high as 7000
m?2/m3 exposed to helium.

- The dendritic molybdenum coating can increase the lithium-exposed
area by a factor of two to three depending on dendrite size (shape and
height). This new configuration more than doubles the convective heat
transfer area between lithium and helium.

- Since the dendrites and foam are integrally bonded to the wall,
conduction through the thermal boundary layer is enhanced from the
lithium into the bulk helium gas stream, improving the heat transfer by an
additional 10%.

- The foam on the helium side promotes turbulence and mixing, resulting
in a very low temperature difference between the inlet lithium and exit
helium (several degrees). The dendrites aid wetting of the molybdenum
wall by lithium, yet do not represent a restriction or increase the pressure
drop by reducing the channel size to the point where surface tension and
capillary forces dominate.
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Mo foam heat exchanger slid over Mo inner Tube with
dendritic internal coating

DIFFUSER INNER TUBE

ot ¥ Mo FOAM TUBE
SHER (X2) HEAT EXCHANGER CLITHIUMY

END CAP (x2) \SLDTTED DUTER SHELL

INLET TUBE DUTLET TUBE
CHELTUM) C(HELIUM)

NOT TO SCALE

Fully-Assembled Prototype (before brazing)

14 Sandia
National
r.h Laboratories

DL Youchison 134012/02



HHF testing of helium-cooled panels nderway at

e Short hi-temp
runs (Mo)
In-vacuo
Experimental
Low cost
Small impact on
HeFL loop
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Modeling of SIC Foam

Temperature ~ Vertical Mises All Maximum Ov
Deformed |

er 500 Over 3000

45ppi,15% 45ppi,10%

65ppi,10%
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100ppi,10% 65ppi,25%

100ppi,20%

plates
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Modeling of Nb Foam

Temperature Vertical Mises All Maximum Over 500 Over 700
Deformed

45ppi,10%

|_LARSRANE- |

45ppi,15%

65ppi,15%
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65ppi,25%

100ppi,10%

100ppi,20%

plates
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Modeling of Nb Foam

Vertical Mises All Maximum Over 500 Over 700
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Thermal stress summary

*Nb foam with 45ppi 10% dense has the lowest thermal stress of all, followed by
Mo and SiC (roughly x3 and x4 higher)

*The SiC foam with 65 ppi 10% density has the lowest stress for the SiC

foams. The 100 ppi cases were higher.

«Stresses increased with density. Effect of ppi not as clear.

In all cases the foam reduces the stress in the faceplates as expected, the Nb
foam by an order of magnitude.

*The SiC foam was not as effective because of higher stresses in the ligaments,

but stresses in the faceplates were still very low. 45l 10% Nb
,10% SIC T 1, 0 oam
Plates (over 3000) 65ppI, 10% SIC foam pp

(over 3000) (over 700)




Concluding remarks

* modeling of porous media on micro-scale now possible

» 64-bit, 4 to 16-node MPI computations, 98 GB ram

« tomography useful for reverse engineering

« improvements in file translation and meshing, but still challenging
* Investigated effectiveness of foams to improve heat transfer

* CFD and thermal stress analysis of porous media

» refractory high temperature foams for Brayton applications

 applications to various gas/gas heat exchangers, recuperators, regenerators,
LM/gas heat exchangers

» modeling of foams for thermal stress reduction and insulation
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