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MOTIVATION: Monte Carlo Markov Chain Sampling: Given a fixed JDM, we are able to sample a random graph with EXPERIMENTS: We used 5 data sets to test the autocorrelation time of our Markov Chain: Word Adjacencies, the
: o that JDM using a Markov Chain. We either construct or are given a graphs the starting configuration, and then Dolphin Social Network, Football Conference Games, the Karate Graph and the Les Miserables dataset. For each
= Many real graphs have power law or lognormal degree distributions convert it into a configuration in the endpoint model. The transition function is then: dataset, we ran the Markov Chain 15 times and recorded the output for 100,000 steps. For each edge in each run,
= Many generative models have the right degree distribution, but fail in metrics like conductance 1) With probability 0.5, stay at this configuration. Else: we calculated the autocorrelation value for lags in step size of 100 from 100 to 15000. We used this to estimate the
= The joint degree distribution is the distribution over edges i N time for the autocorrelation to drop under a threshold for all edges, and the estimated integrated autocorrelation time.
. P s 2) Select any endpoint e at uniformly at random. It is currently matched to vertex u . ) X X )
= The joint degree distribution contains all of the information about the degree distribution ” ; . Given this estimate, we further experimented by taking samples at varying time steps up to the estimated integrated
= Graphs with the same degree distribution can have very different joint degree distributions 3) Select any edge fthat has the same degree requirement as e uniformly at random. It neighbors vertex v autocorrelation time. For each time step, we then computed the sample mean for each edge and compared it with
= Maybe looking at the joint degree distribution can help us create better generative models 4) If the swap (v,e) (u,f) does not create a self-loop or multiple edge, then swap. Return to Step 1 the theoretical mean obtained from the JDM of the dataset. The mean for an edge between degrees k and /is J[k, [/P
= . v [KIP[l]. We show the total variational distance of the sample means from the theoretical means decreases with both
RELATED WORK: For degree distribution, Sequential Importance Sampling: Bayati, Kim and Saberi, 2007, "WjD"[‘)S’egf"“’ the if ‘S‘ate'“iz' in 5'9;’ 4 ‘"T Mi‘k"v g"a'é' Samp'ehs ““"‘L’"‘f'VK"W all _Fr’se“id"g:\;’hs with i:_""‘ed the gap and the number of samples.
i " i i in polynomial time. This can be easily shown by adapting the work of Kannan, Tetali and Vempala. However, _ 3 : ) .- )
and Markov Chain Methods: Gkantsidis, Mihail and Zegura and Kannan, Tetali, and Vempala we are primarily interested in the problem of sampling simple graphs. Our experiments were designed based on Sokal’s survey on Monte Carlo Methods in Statistical Mechanics and
Joint degree di tion (or similar tities) have pi ly been studied by both Newman and 3 Raftery and Lewis’ s The Number of Iterations, Ct Di ics and Generic polis Algori

Krioukov, Fall, and Vahdat. Both give a Markov Chain for sampling random graphs. Newman' s method
converges to a random graph with a fixed assortativity value, rather than a fixed JDD. Mahadevan et al. fix the o S .

JDD but do not provide a transition function that connects the state space. We improve on both of these 000 1800
methods by giving a method for deciding if a JOD is graphical and constructing one if it is, and a provably o o 7000 1
correct Markov Chain for sampling from the space of graphs. 000
om0 1

DEFINITIONS: The joint degree distribution (JDD) of a graph is the probability of a randomly sampled edge being between 3

vertices of degree k and I. This is denoted by P[k,]. The joint degree matrix (JOM) is J[k,}=mP[k.], the count of the number of 2

edges a graph has between degrees k and | ] I 1 }
The degree distribution of a graph can be found from the JDD. It is exactly that @ 0 ° : 1 1 -
0 . . " . R " E R . " . . R

tion Tine

u o ™ we  we s s e 0w m w6 swm e o
P =2 Plk, k] + Z Pk, oo e e
k Chose an edge Chose another Swap edges if there The above graphs have the number of edges in each our 5 datasets as the x axis. For each edge of each dataset and
where jis the average degree in the graph. Similarly, the degree sequence can be obtained as the unnormalized version from edge randomly each of the 15 runs, we calculated the estimated integrated autocorrelation time. We then took the max and median of
he JOM randomly are no self-loops or

the JI " N

3 each edge respectively, and graphed the median, min and max values of these for each dataset.

kPk] = Jlk, K1+ Jlk, 1] such that d(u)=d(v) dataset.

A nearly identical distribution is the joint probability distribution of the remaining degrees, as is used in the definition of
assortativity by Newman.

multiple edges.

CORRECTNESS of MARKOV CHAIN: This Markov Chain has the uniform distribution over graphs with the
given JDM as its stationary distribution. This is due to a combination of standard facts about Markov Chains i.e. the
chain is ergodic and symmetric and an inductive proof that endpoint switches form a connected space in the tradition

Constructing a Graph with a Given Joint Degree Distribution of Taylor’ s 1972 resuit about the same for edge switching.
y and icient Conditi AJDM Jis realizable as a simple graph if: MIXING TIME of MARKOV CHAIN: Proving the mixing time (time to approximately converge to the
stationary distribution) is always challenging. For our Markov Chain, existing approaches like canonical paths aren’ t
Yk, 1k =1,J[k,1]< P[k]P[[] Wk, J[k K] = Plk] easily applied because we reject transitions that create self-loops and multiple edges. This makes it difficult to
v 2 isolate local changes. Instead, we experimented with the autocorrelation time. -
The necessity comes from the fact that the LHS is the maximum number of edges of that type possible in any We graph the time for the autocorrelation for each edge to drop under 0.001 vs its theoretical mean. The left graph is
simple graph. The sufficiency is due to the following constructive algorithm that succeeds exactly when these the Word Adjacency dataset and is the mean over 15 runs, while the right hand diagram is for a synthetic graph that we
are satisfied. The proof of correctness of the algorithm relies on the fact that this method maximizes the . ; ; designed to have many edges over a range of theoretical means. It is the mean of 200 runs for the graph. These graphs
number of vertices with non-zero residual degree at all times. Aald;'; gﬁga%;Eol;:Il?;f'saa‘ﬁ;‘:: d}z‘:fe";E‘;T‘a;ad“g‘mf:g‘g‘?f’ L’;”:ﬂz ;";Zem"‘g'a"n':i:"v:ﬁaa’:‘dcﬁg::iz"c'a‘:e suggest that the ‘slowest’ edges in the system are those with mean 0.5. We are repeating the experiments for larger
Additionally, these conditions provably imply the Erdos-Gallai condition for a degree sequence to be graphically use the autocorrelation values of samples generated by the Markov Chain to judge when the chain has converged. | 9"2P"S ¥ sampling edges with means between 0.4 and 0.6 and observing their performance on our metrics
realizable. The condition is that a decreasing sorted degree sequence, {d;,d,,...d,} is graphical if and only if e Percen Eror of Tkl Vatatonsl Distance, Karske
-0 The autocorrelation function is i Tooo0 vanils s oot owses
Vi = n,zd, sk(k-1)+ Z min(d , k) 1& = 4f e RS
d T = DRy (@) e
2, 20
The integrated autocorrelation time is defined as P = +.
1: Input: / n.m, 7 2 . . k3 T T 1 1
2 fork—n---1do R, ()= E[(X, )X, — )] R ~ .
3 forl=k---1do X o
4 if # 0 then T T oo — °
& “2: (hates Given a length ¢ series of sampled graph data, these values can all be easily calculated in O(n?t log f) time. Mimber of B Setmon Semscn ¢ T o o =
*
6: Leta= _#; mod Z and b= _#; mod 7; [ —— For each of our datasets, we ran the Markov Chain 10
5 - . e ] - times and took samples at varying gaps until we had
7 etx;---xXg = |5+ 1and xa1 -+ xg = [ 5] . C 10,000 samples. These graph the percent error from of
8 Lety;---yp = )j +1and ypyq--- );“ m ST = T o T 7 the total variational distance between the sample mean
e Construct a bipartite graph B with degree sequence x; - x, .1 ---yo, Word olphins  Footba arate  Les Miserables for each edge and the theoretical mean from the JOM. We
o else o+ demonstrate that the residual error is due to too few
1 Letc—2_gx mod 7 |Vertices| 12 62 115 34 77 l samples by increasing the sample rate to 20,000 samples
2 gk > for 1 run for each graph. The error bars represent that
12: Letx; -+ -xc Sl Hlandxei - xg = | =5 |Edges| 425 159 616 78 254 e : : maximum and minimum error for each graph size over the
13: Cr_‘@s(ruc! a simple graph B with the degree sequence x - - -xg, ) 10 runs. The graph to the left presents the results for the
14: end if |JDD| 159 61 18 40 99 three larger datasets with only 10,000 samples for 1 run.
1s: Place B into G such that x; ---xq and y; -- -y, are matched with the appropriate degree T =5
nodes of higher residual degree. Median Est. Int. 2589 868 3052 492 1897
16: Update the residual degrees of each k and / degree node. Autocorrelation Time Funding Statement: This work is supported by Applied Mathematics program of DOE Advanced Scientific
— - _ - - - Computing Research. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a
Initial results published in Proc. Alenex 11, journal version submitted to ACM JEA. wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy, National Nuclear Security
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