
Constructing and Sampling Graphs with a Given Joint Degree Distribution 
Isabelle Stanton 

isabelle@eecs.berkeley.edu 
Computer Science Dept. UC Berkeley 

Ali Pinar 
apinar@sandia.gov 

Sandia National Laboratories 

Monte Carlo Markov  Chain Sampling: Given a fixed JDM, we are able to sample a random graph with 
that JDM using a Markov Chain. We either construct or are given a graphs the starting configuration, and then 
convert it into a configuration in the endpoint model. The transition function is then: 

1)  With probability 0.5, stay at this configuration. Else: 

2)  Select any endpoint e at uniformly at random. It is currently matched to vertex u 

3)  Select any edge f that has the same degree requirement as e uniformly at random. It neighbors vertex v 

4)  If the swap (v,e) (u,f) does not create a self-loop or multiple edge, then swap. Return to Step 1 

If we disregard the if statement in Step 4, the Markov Chain samples uniformly over all pseudographs with a fixed 
JDD in polynomial time. This can be easily shown by adapting the work of Kannan, Tetali and Vempala. However, 
we are primarily interested in the problem of sampling simple graphs. 

CORRECTNESS of MARKOV CHAIN: This Markov Chain has the uniform distribution over graphs with the 
given JDM as its stationary distribution. This is due to a combination of standard facts about Markov Chains i.e. the 
chain is ergodic and symmetric and an inductive proof that endpoint switches form a connected space in the tradition 
of Taylor’s 1972 result about the same for edge switching. 

MIXING TIME of MARKOV CHAIN: Proving the mixing time (time to approximately converge to the 
stationary distribution) is always challenging. For our Markov Chain, existing approaches like canonical paths aren’t 
easily applied because we reject transitions that create self-loops and multiple edges. This makes it difficult to 
isolate local changes. Instead, we experimented with the autocorrelation time.  

 

DEFINITIONS: The joint degree distribution (JDD) of a graph is the probability of a randomly sampled edge being between 
vertices of degree k and l. This is denoted by P[k,l]. The joint degree matrix (JDM) is J[k,l]=mP[k,l], the count of the number of 

edges a graph has between degrees k and l. 

The degree distribution of a graph can be found from the JDD. It is exactly that  

 

 

where µ is the average degree in the graph. Similarly, the degree sequence can be obtained as the unnormalized version from 
the JDM. 

 

A nearly identical distribution is the joint probability distribution of the remaining degrees, as is used in the definition of 
assortativity by Newman. 
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For each of our datasets, we ran the Markov Chain 10 
times and took samples at varying gaps until we had 
10,000 samples. These graph the percent error from of 
the total variational distance between the sample mean 
for each edge and the theoretical mean from the JDM. We 
demonstrate that the residual error is due to too few 
samples by increasing the sample rate to 20,000 samples 
for 1 run for each graph. The error bars represent that 
maximum and minimum error for each graph size over the 
10 runs. The graph to the left presents the results for the 
three larger datasets with only 10,000 samples for 1 run. 

MOTIVATION: 
§  Many real graphs have power law or lognormal degree distributions 
§  Many generative models have the right degree distribution, but fail in metrics like conductance 
§  The joint degree distribution is the distribution over edges 
§  The joint degree distribution contains all of the information about the degree distribution 
§  Graphs with the same degree distribution can have very different joint degree distributions 
§  Maybe looking at the joint degree distribution can help us create better generative models 

RELATED WORK: For degree distribution, Sequential Importance Sampling: Bayati, Kim and Saberi, 2007, 
and Markov Chain Methods: Gkantsidis, Mihail and Zegura and Kannan, Tetali, and Vempala.  

Joint degree distribution (or similar quantities) have previously been studied by both Newman and Mahadevan, 
Krioukov, Fall, and Vahdat. Both give a Markov Chain for sampling random graphs. Newman’s method  
converges to a random graph with a fixed assortativity value, rather than a fixed JDD. Mahadevan et al. fix the 
JDD but do not provide a transition function that connects the state space. We improve on both of these 
methods by giving a method for deciding if a JDD is graphical and constructing one if it is, and a provably 
correct Markov Chain for sampling from the space of graphs. 

Constructing a Graph with a Given Joint Degree Distribution 
Necessary and Sufficient Conditions: A JDM J is realizable as a simple graph if: 

 

 

The necessity comes from the fact that the LHS is the maximum number of edges of that type possible in any 
simple graph. The sufficiency is due to the following constructive algorithm that succeeds exactly when these 
are satisfied. The proof of correctness of the algorithm relies on the fact that this method maximizes the 
number of vertices with non-zero residual degree at all times.  

Additionally, these conditions provably imply the Erdos-Gallai condition for a degree sequence to be graphically 
realizable. The condition is that a decreasing sorted degree sequence, {d1,d2,…dn} is graphical if and only if 
 

 

][][],[,,, lPkPlkJlklk ≤≠∀
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤∀

2
][

],[,
kP

kkJk

∑∑
+==

+−≤≤∀
n

ki
i

k

i
i kdkkdnk

11

),min()1(,

EXPERIMENTS: We used 5 data sets to test the autocorrelation time of our Markov Chain: Word Adjacencies, the 
Dolphin Social Network, Football Conference Games, the Karate Graph and the Les Miserables dataset. For each 
dataset, we ran the Markov Chain 15 times and recorded the output for 100,000 steps. For each edge in each run, 
we calculated the autocorrelation value for lags in step size of 100 from 100 to 15000. We used this to estimate the 
time for the autocorrelation to drop under a threshold for all edges, and the estimated integrated autocorrelation time. 

Given this estimate, we further experimented by taking samples at varying time steps up to the estimated integrated 
autocorrelation time. For each time step, we then computed the sample mean for each edge and compared it with 
the theoretical mean obtained from the JDM of the dataset. The mean for an edge between degrees k and l is J[k,l]/P
[k]P[l].  We show the total variational distance of the sample means from the theoretical means decreases with both 
the gap and the number of samples.  

Our experiments were designed based on Sokal’s survey on Monte Carlo Methods in Statistical Mechanics and 
Raftery and Lewis’s The Number of Iterations, Convergence Diagnostics and Generic Metropolis Algorithms. 

Word 
Adjacencies 

Dolphins Football Karate Les Miserables 

|Vertices| 112 62 115 34 77 

|Edges| 425 159 616 78 254 

|JDD| 159 61 18 40 99 

Median Est. Int. 
Autocorrelation Time 

2589 868 3052 492 1897 

AUTOCORRELATION: Given an independent random sampler from a space with mean µ and variance σ, the 
autocorrelation of a set of samples adjusted by µ and σ will be 0. If we know the mean and variance then we can 

use the autocorrelation values of samples generated by the Markov Chain to judge when the chain has converged. 

The autocorrelation function is 

 

 

The integrated autocorrelation time is defined as 

 

 

Given a length t series of sampled graph data, these values can all be easily calculated in O(n2t log t) time. 
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Initial results published in Proc. Alenex 11, journal version submitted to ACM JEA.  

The above graphs have the number of edges in each our 5 datasets as the x axis. For each edge of each dataset and 
each of the 15 runs, we calculated the estimated integrated autocorrelation time. We then took the max and median of 
each edge respectively, and graphed the median, min and max values of these for each dataset. 

We graph the time for the autocorrelation for each edge to drop under 0.001 vs its theoretical mean. The left graph is 
the Word Adjacency dataset and is the mean over 15 runs, while the right hand diagram is for a synthetic graph that we 
designed to have many edges over a range of theoretical means. It is the mean of 200 runs for the graph. These graphs 
suggest that the ‘slowest’ edges in the system are those with mean 0.5. We are repeating the experiments for larger 
graphs by sampling edges with means between 0.4 and 0.6 and observing their performance on our metrics. 

Chose an edge 
randomly  

Chose another 
edge randomly 

such that d(u)=d(v)  

Swap edges if there 
are no self-loops or 

multiple edges.  
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