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Simulation of polycrystalline aggregates to understand in-situ grain boundary stress states under 

dynamic loading conditions 

Thermal-mechanically coupled simulations of polycrystalline metallic materials were conducted using an 

elastic-visco plastic slip based single crystal model with crystallographic orientation, temperature, and 

strain rate dependence. This model has been developed for use under both low and high rates of 

loading for copper. The microstructure of the polycrystalline aggregates were represented numerically 

by generating statistically equivalent topologies from experimentally quantified EBSD measurements on 

copper samples of varying characteristics. The simulations are conducted under both dynamic and shock 

loading conditions for materials which damage and fail by pore nucleation at grain boundaries. The 

simulation results are examined for intergranular relationships which could lead to pore nucleation 

conditions at grain boundaries under these states of loading. Where possible, comparisons are made 

between the simulation and matched experiments conducted on the material from which the 

microstructural statistics were drawn. 
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Strain Rates vary within Dynamic Experiments 
In a dynamic experiment strain rates may vary by orders of magnitude. 

Shock experiments reach strains of -106 sec-1 consistently. 
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New Single Crystal Model for High Rates 
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Requisite Single Crystal Model 
DOMAIN OF INTEREST 

• Large deformation (plastic) 
• Valid at high strain rates (106) 

• Varying strain rates (spatial and temporal) 
• Single crystal length scale (mesoscale) 

GOALS OF CONSTITUTIVE MODEL 

• 

• 

• 
• 

Measureable physical parameters and state variables (i.e. 
dislocations) 
Includes strain rate sensitivities: quasi-static to shock-loaded with 
transition (latent hardening, kinetic effects, thermal effects) 
Crystalline microstructures directly represented 
Application to polycrystal shock loading, incorporation with 
damage Varying strain 

rates 
Co Plane Strain Compression 

Undeformed 8 = -1.5 
Color Coded Map Type: Orain A>lerage Misorientation 

Localization from Total Partition 
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Directly model Dislocation Density 

• Treat dislocation density as a state variable 
• Determine a set of distinguishable statistical dislocation 

populations: 
- Mobile(pM): glissile dislocations free to move and carry plasticity 

belonging to a slip system 

interM == {p'ile up, annihilate, sess'ile lock, no interaction} 

- Pile-up(pP): glissile dislocations belonging to a slip system which 
currently do not move due to being blocked by obstacles with a 
sufficient barrier to prevent motion 

i'nterP == {escape, an'n'ihilate, sess'ile lock, 1'toi1~teraction} 

- Debris(pL): sessile obstacles to dislocation motion 

- Adaptable: edge and screw or other distinguishing features of dislocations could be included 



Dislocation I nteraction Rates 

• Rate of interaction between each 
population is computed 

P· inte1~ _ D inter p p /'" I. 

AB - AB B A LAB . 

Thermal probability is required for certain 
interactions: inter 

Depending on population types fractions may 
be required: f inter 
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c is an accounting term: 2 if same 
population is interacting, 1 otherwise 



I nteraction Terms 

Accounting Term 

in1er = (1 + 6' 
= 0, if no interaction 

= 2, if same population 

= 1, otherwise 

Thermal Probability 

BB) (8{inter)(no)) 

anni 
1 

Table 3 . Thermal probability of mobile dislocation interactions 

exp[eSCAo] = exp [- ((7;b - 17o l)b
2 

-l(Aa) £] 
kb(} 

= 1 , if interaction has no energy barrier 

= 1, if stress and kinetic energy overcome barrier 

o < P < 1, otherwise 

Fraction of Interactions 

Defined by relation between slip systems and 
dislocation population types 
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Table 1. F\'action of dislocation interactions for mobile dislocations 
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Table 2. Fraction of dislocation interactions for pile-up dislocations 



Mobile Dislocations 
d 

• Generation - dislocation sources 
~R.fc:ct R ".[FR 

0< Rlv!f l exp [-27rp~R (~~) 2] 
Based on random distribution of source pinning points 

• Propagation - expansion of loops IVa- ~t 
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Pile-up and Debris 

• Thermal escape 

• esct:J -. P [ 
PPer = 1 _ ..,o~ Po. exp L. 

• Escape bv collision 

] Thermal fluctuation 
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Hardening and Kinetic Effects 
• Mobile/Pile-up transition thermal probability 

- Obstacle density (determined by interactions and densities on other slip planes) 
- Latent hardening will be inherent 
- Kinetic effects are maintained 

e:x.rp [eSCAa] exp [ -((T~b - ITal)lr - I\~Aa)£] 
kb() 

Obstacle strength 
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High-rate to Low-rate Transition 

• Transition between a thermally-activated 
system and a drag dominated system 
occurs: 

. b 1\f/ a == Po. 1'0 
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Slip Rate for Single Slip System 
Conditions 
• Fixed density of obstacles: 

• 

• 

pi = constant 
Fixed total density of dislocations: 
pM+pP = constant 
I mpose a strain rate (equivalent to 
slip rate), compute shear stress 
required by iteration 

-Transition between thermally­
activated and drag dominated evident. 
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Boundary Conditions 
? 0 0 

I 

F=t 
. i Crystal direction 

lJ 0 ? 0 (aligned to tensile axis) . 
Z 0 0 f 

0 ? ? . . 

P==l ? 0 ? . . 
? ? ? 

Table 4.1: Copper :Material COlliilant.s 

I Constant I Value II n.er~ m ~ u m] 

Ela.'itic Const. (ell ) 168.4 GPa [GH711 
Ela.. .. tic Coust.. (en) 121.4 GPa [GUn1 
Elastic' COtl:ot. (Cli!) 75 .. 1 CPa [GH711 

y 
Crit. Sh<!ar Stress (r"') 1.0 MPa [Bar52) 
Dlll'gers Vector (b) 2.56 • 10-10 m [KAA751 I 

x Line Tension (1') 18.3 *' 10- 10 N lKAA751 
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Single Crystal Tension Results 

001 Single Crystal Copper at rate 1 E6 
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-Stresses from elastic model. 

-Implicit integration. 

-Strain rate of 1. 

-Densities for one of the 8 primary slip 
systems displayed. 

-Due to symmetry 8 primary slip planes 
are identical. 



Experimental Comparison 
Rate Dependent Flow Stress of Copper 

Flow Stress vs. Strain Rate 
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Temperature Comparison 
Temperature Dependent Flow Stress of Copper 

Temperature Oependece Experimental Split Hopkinson Bar 
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Highlights of New Dislocation­
based Plasticity Model 

• Dislocation densities modeled directly for 
comparison to experimental quantities. 

• Physical parameters 
• Easily adjustable dislocation populations 

interactions - for varying materials. 
• Inherent transition from high-rate drag­

dominated to low-rate thermally activated 
dislocation motion. 

• Includes kinetic effects, latent hardening, and 
thermal softening. 

• Statistical representation of dislocation evolution. 

Current focus on FCC materials. 



Challenge of linking microstructure to 

• The large deformation (strains of 3.0)/high rate 
(106 sec-i) ductile failure process generally involves 
localization, porosity initiation, porosity growth, 
and coalescence dominated by localized 
deformation. 

• These physical events are stochastic, occur over 
several length scales, and intimately involves the 
microstructure. 

• Understanding these complex thermo-mechanical 
processes is critical to our ability to numerically 
represent and predict large deformation and 
damage / failure events. 


