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Simulation of polycrystalline aggregates to understand in-situ grain boundary stress states under
dynamic loading conditions

Thermal-mechanically coupled simulations of polycrystalline metallic materials were conducted using an
elastic-viscoplastic slip based single crystal model with crystallographic orientation, temperature, and
strain rate dependence. This model has been developed for use under both low and high rates of
loading for copper. The microstructure of the polycrystalline aggregates were represented numerically
by generating statistically equivalent topologies from experimentally quantified EBSD measurements on
copper samples of varying characteristics. The simulations are conducted under both dynamic and shock
loading conditions for materials which damage and fail by pore nucleation at grain boundaries. The
simulation results are examined for intergranular relationships which could lead to pore nucleation
conditions at grain boundaries under these states of loading. Where possible, comparisons are made
between the simulation and matched experiments conducted on the material from which the
microstructural statistics were drawn.
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Strain Rates vary within Dynamic Experiments

In a dynamic experiment strain rates may vary by orders of magnitude.
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New Single Crystal Model for High Rates

New single crystal model developed
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Requisite Single Crystal Model
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DOMAIN OF INTEREST

e Large deformation (plastic)

e Valid at high strain rates (109)

e Varying strain rates (spatial and temporal)
e Single crystal length scale (mesoscale)
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GOALS OF CONSTITUTIVE MODEL

e Measureable physical parameters and state variables (i.e.
dislocations)

e Includes strain rate sensitivities: quasi-static to shock-loaded with
transition (latent hardening, kinetic effects, thermal effects)

e Crystalline microstructures directly represented
e Application to polycrystal shock loading, incorporation with

damage Varying strain
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Directly model Dislocation Density

» Treat dislocation density as a state variable

» Determine a set of distinguishable statistical dislocation
populations:

Mobile(pM): glissile dislocations free to move and carry plasticity
belonging to a slip system

inter™ = {pile up, annihilate, sessile lock. no interaction}

Pile-up(pF): glissile dislocations belonging to a slip system which
currently do not move due to being blocked by obstacles with a
sufficient barrier to prevent motion

inter? = {escape. annihilate. sessile lock. no interaction)

Debris(pl): sessile obstacles to dislocation motion

Adaptable: edge and screw or other distinguishing features of dislocations could be included



Dislocation Interaction Rates
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Interaction Terms
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Mobile Dislocations
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Pile-up and Debris

 Thermal escape
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Hardening and Kinetic Effects

* Mobile/Pile-up transition thermal probability
— Obstacle density (determined by interactions and densities on other slip planes)
— Latent hardening will be inherent
— Kinetic effects are maintained
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High-rate to Low-rate Transition

* Transition between a thermally-activated
system and a drag dominated system
OCCUrs:
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Slip Rate for Single Slip System

Conditions

. Fixed density of obstacles:
p' = constant

. Fixed total density of dislocations:
pM+pP = constant

. Impose a strain rate (equivalent to

slip rate), compute shear stress
required by iteration

*Transition between thermally-
activated and drag dominated evident.
Comparable to polycrystalline
experiments and d.d. simulations.
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Boundary Conditions

Crystal direction
(aligned to tensile axis)

Bottom
grip

o O
o O

- O O

Table 4.1: Copper Material Constants

| Constant | Value | Ref. |
Elastic Const. (') 1684 GPa GHT1
Elastic Const. (Cyy) 121.4 GPa GHT1
Elastic Const. (('gy) 75.4 GPa GHT1
Crit. Shear Stress (79) | 1.0 MPa Barb2
Burgers Vector (b) 2.56 « 10710 m KAATS|
Line Tension (1) 183+ 10710 N || [KAATS




stress axial (Pa)

Single Crystal Tension Results
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Stress (Pa)

Experimental Comparison

Rate Dependent Flow Stress of Copper

Flow Stress vs. Strain Rate
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stress axial (Pa)

Rate Comparison

Rate Comparison

True Stress, MPa

100

(zvwyy) Apsuap ajiqow Arewnd

50

true strain axial

Note, stress scales

and rates are different

350 |
300 |
250 |
200 |

150 |

Stress 25 .001, MPa

Stress 25 .1, MPa

Stress 25 2000, MPa

) N L l =l

0.1 0.2 0.3 0.4 0.5 0.6

True Strain

0.7



stress axial (Pa)

Temperature Comparison

Temperature Dependent Flow Stress of Copper

Temperature Dependece Experimental Split Hopkinson Bar

250 10° : . : 510" 350 1 ! ! !

300 -
200 10°
g 373
g 250
<
[V}
150 10° g o . 673
o = 200
>
150
100 10° a S _
< [
=
3 100
N
50 10° ~
50
0 — - =} 0 o
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
true strain axial Note, stress scales

i True Strain
are different



Highlights of New Dislocation-
based Plasticity Model

Dislocation densities modeled directly for
comparison to experimental quantities.

Physical parameters

Easily adjustable dislocation populations
interactions — for varying materials.

Inherent transition from high-rate drag-
dominated to low-rate thermally actlvated
dislocation motion.

Includes kinetic effects, latent hardening, and
thermal softening.

Statistical representation of dislocation evolution.

Current focus on FCC materials.



The large deformation (strains of 3.0)/high rate
(10° sec?) ductile failure process generally involves
localization, porosity initiation, porosity growth,
and coalescence dominated by localized
deformation.

These physical events are stochastic, occur over
several length scales, and intimately involves the
microstructure.

Understanding these complex thermo-mechanical
processes is critical to our ability to numerically
represent and predict large deformation and
damage / failure events.



