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The XFEM in ALEGRA

 ALEGRA: multiphysics Arbitrary Lagrangian-Eulerian
simulation software developed at Sandia

 The eXtended Finite Element Method for material interfaces:
 Enrichment of velocity field for each material

 Effectively an adaptive refinement technique: material interfaces are 
resolved in multi-material elements, avoiding mixed-material models

 XFEM demands accurate interface reconstruction
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 Youngs’ Method for interface reconstruction (1982):
 Volume-of-fluid method: discretely mass conserving

 Only data available for reconstruction are the volume fractions

 Interface normal computed from gradient of volume fraction

 For more than two materials, an ordering is required

 ALEGRA has no infrastructure for tracking local (sub-element) 
material centroids

Interface Reconstruction
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 Youngs’ method extended to allow intersecting and 
terminating interfaces by selective gradient calculation 
(Mosso & coworkers)

 Interfaces cut from arbitrary polygons/polyhedra

 Second-order accurate with smoothing

 Enables XFEM in ALEGRA, but not exclusive to it

Pattern Interface Reconstruction
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The Ordering Problem

 A-B-C or A-C-B? Accumulate volume fractions?
 Each interface is computed from an A | not A proposition

 For N materials, there are (N-2)N! ordering combinations
 Quickly becomes burdensome for users running complex problems

Manual Ordering Automatic Ordering

Specified by user No a priori input required

Global material ordering Local material ordering

Static Dynamic

5

A B

C

A

C B



Ordering Algorithm

 Automatic ordering: Mosso & Clancy (1994), Benson (1998)
 Sijoy & Chaturvedi (2010) combined these for similar approach

 Our method handles PIR interfaces, extended to 3-D

 Critical that ordering should be grid-independent
 Given interface should yield the same ordering regardless of frame

 Requires perpendicular-distance least squares regression

 Use local material position approximation
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Algorithm (2-D)

1. Calculate local material centroid approximations
 Approximate materials as located at centroid of each neighbor

2. Fit a line to the centroids
 Volume-fraction weighted least squares fit

 Perpendicular distance regression for grid independence

3. Define ordering by distances along 
line of projected material centroids
 Choice of ordering direction: material

closest to the line determines direction

4. For certain cases, modify ordering
or gradient to improve interfaces
 Choice of gradient approximation:
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 Identify candidates by regression quality indicator

 Effectively a low-order smoothing: improving gradients

 Ordering direction choice:
 Largest volume material usually closest to the line, ordered first

 Can be distorted by appearance of another material in neighborhood

 Compute centroid of the complement of each candidate material and 
compare distances from original regression line

Ordering ‘Fixes’ (1)
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 PIR allows for intersecting interfaces: T-intersections
 Angle of intersection depends on gradient calculation choice

 Gradient choice at T-intersections:
 Usually accumulation is best for the second material (e.g., layers)

 Terminating interface may be ‘better’ without accumulation:
when T-intersection is identified, compute both interfaces

 Choose the interface that better suits the neighborhood

Ordering ‘Fixes’ (2)
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Demonstration Problem

 Low-resolution block impacting a wall, Eulerian XFEM
 Manual ordering gives ‘reference’ solution [not converged]
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A Contrived Example

 Nested spheres striking a plate

 4 materials + void
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Another Example

 Plate impact at 800 m/s
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Extension to 3-D

 Need an ordering direction: start by fitting a basis
 Error equation: 

normal of the plane

 Residual equation: 
tangential direction

 Extreme points 
coincide to define
the basis directions
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1. Calculate local material centroid approximations

2. Fit a basis to the centroids
 Newton method for initial solution, then complete the basis

 Fail-safe sequence to ensure a solution is found

3. Identify tangential direction (ordering line)

4. Define ordering by distances along line
of projected material centroids
 Same logic as 2-D, based on distance

projected on the intersection plane

5. Check for ordering overrides (as in 2-D)
 Switch ordering if necessary

 Check gradients at T-intersections

Algorithm (3-D)
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3-D Demonstrations

 Verification tests
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3-D Examples

 Whipple shield: sphere impacting plate in air

 An enabling feature for 3-D Eulerian XFEM in ALEGRA
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3-D Examples

 Plate impact at 750 m/s (3-D Eulerian, without XFEM)
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