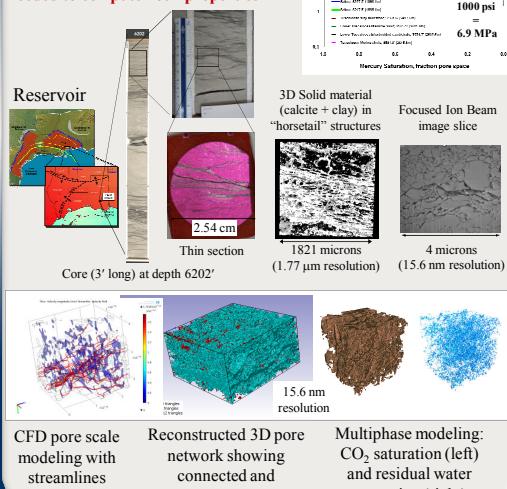


Geologic Storage of CO₂

Greenhouse gas carbon dioxide (CO₂) produced by power plants and other industrial processes can be captured and safely stored for thousands of years underground in deep saline reservoirs. If CO₂ is injected into these reservoirs, CO₂ will behave more like a liquid than a gas as supercritical CO₂ (scCO₂), dissolve in saline water and become widely dispersed in the reservoir over hundreds to thousands of years. Dissolved CO₂ can also react with minerals within reservoirs, precipitate, and remain underground for a long time.

Once it is stored, slow releases of CO₂ from geological reservoirs are likely to occur over time. Development and mitigation of leakage pathways from subsurface CO₂ storage reservoirs may well depend on coupled thermal, mechanical, hydrological, and chemical interactions.



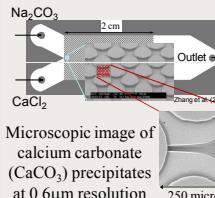
Rock Samples and Multiphase Flow

Selma chalk:

- Secondary "seal" for NETL's SEACARB Phase II Plant Daniel site for CO₂ injection into Lower Tuscaloosa
- Of interest as "leaky caprock" to mitigate injection pressure hazard

Reservoir rock samples at the resolution needed to compute rock properties

We link laboratory micro-scale and rock core-scale experimental and modeling efforts to examine:

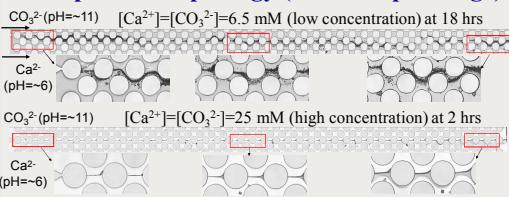

- How does scCO₂ interact with water, brines, and mineral surfaces? [multiphase flow]
- What are the relevant physics of CO₂ fate and transport? [reactive transport and rock-fluid interactions]
- How can pore scale processes be synthesized and upscaled into more powerful continuum models?
- How can observed leaks such as natural analogs be incorporated into improving the predictive models?

Pore-Scale Modeling for Reactive Transport

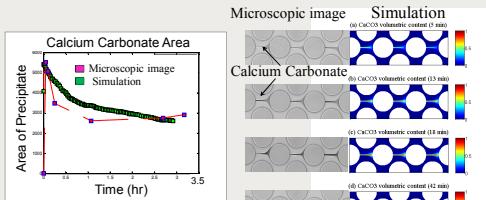

- Pore scale modeling of mixing-induced calcium carbonate (CaCO₃) precipitation and dissolution in a microfluidic pore-network

Experimental setup

- Two solutions are mixing along the centerline and CaCO₃ precipitates


Pore scale modeling

Lattice Boltzmann Method for water flow velocity in pore space at 1 μm resolution


Direct Numerical Simulation result of CaCO₃ precipitation and dissolution

Precipitate Morphology (Microscopic image)

- Precipitate is more uniform and narrow transverse to flow at higher conc.

Pore-scale modeling results

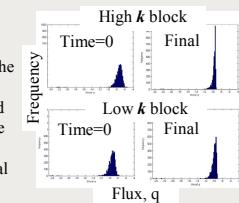
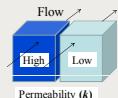
- Pore scale simulation with a newly developed crystal growth model captures governing physics of crystal growth and dissolution patterns
- Results will be applied for core-scale (~10 cm) data and more realistic environmental conditions

Multi-Scale Modeling of Reactive Transport through Porous Media

Mortar Coupling Pore Network models

- Mortar is a finite element based interface of pressure/flux/fluid saturation fields
- Mortar is used to couple two networks by matching the flux from both sides
- Subdomains are decomposed and solved separately using pressures at interface

Mortar Upscaling: Couple one million pore networks

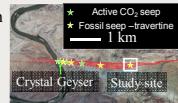



- The entire domain is solved by coupling individual networks using mortars; the overall permeability (K_{mortar}) is estimated by ensuring continuity at all interfaces.
- The boundary condition on each network is much more realistic

Example Problem

To understand the impact of mineral precipitation on CO₂ saturated brine flow

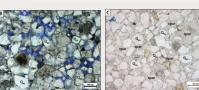
- A governing equation controlling the rate of mineral precipitation in pore-throats was used
- Two pore-scale blocks were assembled parallel to flow direction



Results

- Faster decrease in permeability of the high K blocks results in a narrower pore-throat-flux (q) distribution and similar q in both blocks at later time
- These results imply that uniform cementation occurs, leading to equal fluxes through the entire medium

Natural analogue for carbonate sealing of CO₂ leakage pathways


CO₂ Leakage Analogue, Crystal Geyser, Utah

Key results

- Increase in calcite pore cementation near CO₂ conduit (C) ~ decrease in porosity and permeability (sealing)
- Cementation confined to immediate vicinity (~100 m) of structurally controlled flow conduit

For more information on natural analogue, visit the poster P2-F5 CFSES

Inside fault zone: 152 m (left) and 33 m (right) from conduit

Selected Research Highlights

- Characterized reservoir rock properties (e.g., pore size distribution, mechanical properties) at core- to nano-meter scales
- Developed a mechanistic crystal growth model at pore scale and applied to reactive transport experiments in a microfluidic pore network
- Invented upscaling approach that includes more detailed pore-scale properties (e.g., K_{mortar}) and demonstrated carbonate cementation reduces K at the pore scale relevant to long-term security of CO₂