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Overview of UQ Methods

Estimation of model/parametric uncertainty

Expert opinion, data collection

Regression analysis, fitting, parameter estimation

Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models

Local sensitivity analysis (SA) and error propagation

Fuzzy logic; Evidence theory — interval math
Probabilistic framework — Global SA / stochastic UQ

Random sampling, statistical methods
Polynomial Chaos (PC) methods

– Collocation methods — sampling — non-intrusive
– Galerkin methods — direct — intrusive
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Different Types of Uncertainty?

Epistemic versus Aleatoric uncertainty
Both can be handled equally well with probability theory

Bayesian versus Frequentist
Bayesian viewpoint encompasses both
Probabilistic math structure is self-consistent for both

When interval methods are used in practical problems:
Challenges with blow up of interval ranges – Singer, SISC 2006

Resort to random sampling – Kreinovich, RC 2007

Any quantity can be estimated
Expert opinion
Maximum Entropy
Bayes formula
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Validation

No model is “true"

Validity is a statement of model utility for predicting a given
observable under given conditions

Inspection of model utility requires accounting for
uncertainty
Statistical tool-chest for model validation

Calibration based on a data subset and analysis of fit to its
complement
Model comparison – Bayes Factors, Model Plausibility
Posterior predictive
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Bayes formula for Parameter Inference

Data Model (fit model + noise): y = f (λ) + ǫ

Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)

Prior

p(λ)

p(y)
Evidence

Prior: knowledge of λ prior to data

Likelihood: forward model and measurement noise

Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Exploring the Posterior

Given any sample λ, the un-normalized posterior
probability can be easily computed

p(λ|y) ∝ p(y|λ)p(λ)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Surrogate Models for Bayesian Inference

Need an inexpensive response surface for
Observables of interest y
as functions of parameters of interest λ

Fit a convenient polynomial to y = f (λ)

– over the range of uncertainty in λ

Employ a number of samples (λi , yi)
Fit with interpolants, regression, ... global/local
With uncertain λ :

– Construct polynomial chaos response surface

SNL Najm UQ in Reacting Flow 9 / 37



Basics Validation Inputs Chall Closure

Polynomial Chaos Methods for UQ

Model uncertain quantities as random variables (RVs)

Any RV with finite variance can be represented as a
Polynomial Chaos expansion (PCE)

u(x, t, ω) ≃

P
∑

k=0

uk(x, t)Ψk(ξ(ω))

– uk(x, t) are mode strengths
– ξ(ω) = {ξ1, · · · , ξn} is a vector of standard RVs
– Ψk() are functions orthogonal w.r.t. the density of ξ

with dimension n and order p:

P + 1 =
(n + p)!

n!p!
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Orthogonality

By construction, the functions Ψk() are orthogonal with respect
to the density of the basis/germ ξ

uk(x, t) =
〈uΨk〉

〈Ψ2
k〉

=
1

〈Ψ2
k〉

∫

u(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ

Examples:

Hermite polynomials with Gaussian basis

Legendre polynomials with Uniform basis, ...

Global versus Local PC methods
– Adaptive domain decomposition of the stochastic

support of u
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Intrusive PC UQ: A direct non-sampling method

Given model equations: M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =

P
∑

k=0

ukΨk; λ =

P
∑

k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations:
G(U(x, t),Λ) = 0

– with U = [u0, . . . , uP]T, Λ = [λ0, . . . , λP]T

Solving this system once provides the full specification of
uncertain model ouputs
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Non-intrusive Spectral Projection (NISP) PC UQ

Sampling-based

Relies on black-box utilization of the computational model

Evaluate projection integrals numerically

For any model output of interest φ(x, t;λ):

φk(x, t) =
1

〈

Ψ2
k

〉

∫

φ(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . , P

Integrals can be evaluated using
– A variety of (Quasi) Monte Carlo methods
– Quadrature/Sparse-Quadrature methods
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PC Surrogate

λ(ξ) =
P

∑

k=0

λkΨk(ξ)

u = f (λ(ξ)) u =
P

∑

k=0

ukΨk(ξ)

Surrogate can be constructed with any presumed pλ(λ)

– Convenient linear option: λ = λ0 + λ1ξ

PDF(ξ) controls local accuracy of the surrogate over λ

– A uniform ξ implies uniform weighting of the error
residual over λ

Any forward-UQ method of choice can be used to
construct the surrogate
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PC Surrogate Construction for Noisy Functions

Quadrature formulae presume a degree of smoothness
– No convergence for a noisy function

uk =
1

〈

Ψ2
k

〉

∫

u(λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . , P

Sparse-Quadrature formulae are ill-conditioned and
highly-sensitive to noise

– No convergence with order
– Error grows with increased dimensionality

Options in the presence of noise:
RMS fitting for PC coefficients
Bayesian inference of PC coefficients
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Parameter Estimation in Chemical Systems

Forward UQ requires the joint PDF on the input space
– Published data is frequently inadequate

Bayesian inference can provide the joint PDF
– Requires raw data ... which is not available

At best: nominal parameter values and error bars

Fitting hypothesized PDFs to each parameter
nominals/bounds independently is not a good answer

– Correlations and joint PDF structure can be
crucial to uncertainty in predictions
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Generate ignition "data" using a detailed model+noise

Ignition using a detailed
chemical model for
methane-air chemistry

Ignition time versus Initial
Temperature

Multiplicative noise error
model

11 data points:

di = tGRI
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ǫ ∼ N(0, 1)
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Fitting with a simple chemical model

Fit a global single-step
irreversible chemical
model

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = Aexp(−E/RoT)

Infer 3-D parameter
vector (ln A, ln E, ln σ)

Good mixing with
adaptive MCMC when
start at MLE
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Bayesian Inference Posterior and Nominal Prediction
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Marginal joint posterior on
(ln A, ln E) exhibits strong
correlation

Nominal fit model is con-
sistent with the true model

SNL Najm UQ in Reacting Flow 19 / 37



Basics Validation Inputs Chall Closure

Correlation Slope χ and Chemical Ignition
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4th Order Multiwavelet PC, Multiblock, Adaptive

σT,max ∼ 400 K during ignition transient, χ ∼ 0.03
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Time evolution of Temperature PDFs in preheat stage
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Similar results from MC (20K samples) and MW PC

Increased uncertainty, and long high–T PDF tails, in time
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Evolution of Temp. PDF – Fast Ignition Transient
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Transition from unimodal to bimodal PDFs

Leakage of probability mass from pre-heat PDF high–T tail
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Time evolution of Temperature PDFs for different χ
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Bimodal solution PDFs for high uncertainty growth

Unimodal for low uncertainty growth, with χ ≈ 0.044
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Central Challenge for UQ in Chemical Kinetic Models

Need joint PDF on model parameters for forward UQ

Joint PDF structure is crucial

Joint PDF not available for chemical kinetic parameters
At best, have

Nominal parameter values
Bounds, e.g. marginal 5%, 95% quantiles

PDF can be constructed by repeating experiments
or access to original raw data

– Neither is feasible

Is there a way to construct an approximate PDF without
access to raw data?

– Yes!
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Data Free Inference (DFI) (Berry et al., JCP, in review)

Intuition: In the absence of data, the structure of the fit
model, combined with the nominals and bounds, implicitly
inform the correlation between the parameters

Goal: Make this information explicit in the joint PDF

DFI: discover a consensus joint PDF on the parameters
consistent with given information:

– Nominal parameter values
– Bounds
– The fit model
– The data range
– ... potentially other/different constraints
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Data Free Inference Challenge

Discarding initial data, reconstruct marginal (ln A, ln E) posterior
using the following information

Form of fit model

Range of initial temperature

Nominal fit parameter values of ln A and ln E

Marginal 5% and 95% quantiles on ln A and ln E

Further, for now, presume

Multiplicative Gaussian errors

N = 8 data points
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DFI Algorithm Structure

Basic idea:

Explore the space of hypothetical data sets
– MCMC chain on the data
– Each state defines a data set

For each data set:
– MCMC chain on the parameters
– Evaluate statistics on resulting posterior
– Accept data set if posterior is consistent with

given information

Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(λ|y) =

[

K
∏

i=1

p(λ|yi)

]1/K
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DFI Uses two nested MCMC chains

An outer chain on the data, (2N + 1)–dimensional
– Generally high-dimensional
– N data points (xi , yi) + σ
– Likelihood function captures constraints on

parameter nominals+bounds

An inner chain on the model parameters
– Conventional MCMC for parameter estimation
– Likelihood based on fit-model
– parameter vector (ln A, ln E, ln σ)

Computationally challenging
– Single-site update on outer chain
– Adaptive MCMC on inner chain
– Run multiple outer chains in parallel, and

aggregate resulting acceptable data sets
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Short sample from outer/data chain
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Reference Posterior – based on actual data
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Ref + DFI posterior based on a 1000-long data chain
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Ref + DFI posterior based on a 5000-long data chain
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Marginal Pooled DFI Posteriors on ln A and ln E
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Challenges in Forward PC UQ – High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}

– number of degrees of freedom
– P + 1 = (n + p)!/n!p! grows fast with n

Impacts:
– Size of intrusive system
– # non-intrusive (sparse) quadrature samples

Generally n ≈ number of uncertain parameters

Reduction of n:
– Sensitivity analysis
– Dependencies/correlations among parameters
– Identification of dominant modes in random fields

Karhunen-Loéve, PCA, ...
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Challenges in Forward PC UQ – Non-Linearity

Bifurcative response at critical parameter values
Rayleigh-Bénard convection
Transition to turbulence
Chemical ignition

Discontinuous u(λ(ξ))

Failure of global PCEs in terms of smooth Ψk()
⇔ failure of Fourier series in representing a step function

Local PC methods
Subdivide support of λ(ξ) into regions of smooth u ◦ λ(ξ)
Employ PC with compact support basis on each region
A spectral-element vs. spectral construction
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Challenges in Forward PC UQ – Time Dynamics

Systems with limit-cycle or chaotic dynamics

Large amplification of phase errors over long time horizon

PC order needs to be increased in time to retain accuracy
Remedies

Time shifting/scaling
Choose smooth observables

Futile to attempt representation of detailed turbulent
velocity field v(x, t;λ(ξ)) as a PCE

– Fast loss of correlation due to energy cascade
– Problem studied in 60’s and 70’s

Focus on flow statistics, e.g. Mean/RMS quantities
Well behaved
⇒ Use non-intrusive methods with DNS/LES of turbulence
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Closure

UQ is increasingly important in computational modeling
Probabilistic UQ framework

PC representation of random variables
Utility in forward UQ

– Intrusive PC methods
– Non-intrusive methods

Utility in inverse problems – surrogates
– Bayesian inference
– Model validation

Need for probabilistic characterization of uncertain inputs
Correlations important for uncertainty in predictions
DFI ⇒ joint PDF consistent with available information
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