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Basics

Overview of UQ Methods

Estimation of model/parametric uncertainty
@ Expert opinion, data collection
@ Regression analysis, fitting, parameter estimation
@ Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models
@ Local sensitivity analysis (SA) and error propagation

@ Fuzzy logic; Evidence theory — interval math
@ Probabilistic framework — Global SA / stochastic UQ
@ Random sampling, statistical methods
@ Polynomial Chaos (PC) methods
— Collocation methods — sampling — non-intrusive
— Galerkin methods — direct — intrusive
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Different Types of Uncertainty?

@ Epistemic versus Aleatoric uncertainty
@ Both can be handled equally well with probability theory
@ Bayesian versus Frequentist
@ Bayesian viewpoint encompasses both
@ Probabilistic math structure is self-consistent for both
@ When interval methods are used in practical problems:
@ Challenges with blow up of interval ranges — Singer, SISC 2006
@ Resort to random sampling — Kreinovich, RC 2007
@ Any quantity can be estimated
@ Expert opinion
@ Maximum Entropy
@ Bayes formula
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Validation
Validation

@ No model is “true"

@ Validity is a statement of model utility for predicting a given
observable under given conditions

@ Inspection of model utility requires accounting for
uncertainty
@ Statistical tool-chest for model validation

@ Calibration based on a data subset and analysis of fit to its
complement

@ Model comparison — Bayes Factors, Model Plausibility

@ Posterior predictive
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Inputs
Bayes formula for Parameter Inference

Data Model (fit model + noise): y=Ff(\) +e¢
Bayes Formula:

P(A,Y) = p(AlY)p(Y) = p(y|A)p(A)

Likelihood Prior
p(Y[A)  P(A)

p(AI_y) _
Posterior D (y)

Evidence
Prior: knowledge of A prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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Exploring the Posterior

@ Given any sample A, the un-normalized posterior
probability can be easily computed

P(AlY) o< p(Y[A)p(A)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
@ Random walk with proposal PDF & rejection rules

— Computationally intensive, ©(10°) samples
— Each sample: evaluation of the forward model

@ Surrogate models
@ Evaluate moments/marginals from the MCMC statistics
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Inputs
Surrogate Models for Bayesian Inference

@ Need an inexpensive response surface for
@ Observables of interest y
@ as functions of parameters of interest A
@ Fit a convenient polynomial toy = f())
— over the range of uncertainty in A
@ Employ a number of samples (A, vi)

@ Fit with interpolants, regression, ... global/local
@ With uncertain A :

— Construct polynomial chaos response surface
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Polynomial Chaos Methods for UQ

Model uncertain quantities as random variables (RVS)

Any RV with finite variance can be represented as a
Polynomial Chaos expansion (PCE)

u(x, t,w) Zukxt\lfk w))

— Uk(x,t) are mode strengths
— &(w) ={&, - ,&n} is avector of standard RVs
Uy () are functions orthogonal w.r.t. the density of &

with dimension n and order p:

(n+p)!
n!p!

Pt+1=
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Orthogonality

By construction, the functions ¥() are orthogonal with respect
to the density of the basis/germ &

1
Ux,t) = — [ Uk EAE) W(@pe(e)ce
(wg) ~ (9} ¢
Examples:
@ Hermite polynomials with Gaussian basis
@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods

— Adaptive domain decomposition of the stochastic
support of u
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Inputs

Intrusive PC UQ: A direct non-sampling method

M(u(x,t);A) =0

Given model equations:
Express uncertain parameters/variables using PCEs

P P
u= Z W, A= Z APk
k=0 k=0

Substitute in model equations; apply Galerkin projection
G(U(x,1),A) =0

New set of equations:
— withU = [Uo,...,Up]T, A= [Ao,...,AP]T

Solving this system once provides the full specification of

uncertain model ouputs
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Inputs

Non-intrusive Spectral Projection (NISP) PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any model output of interest ¢(x, t; \):

dex.t) = /qsxu £) U(€)pe(€)dE, k=0,....P

@ Integrals can be evaluated using

— A variety of (Quasi) Monte Carlo methods
— Quadrature/Sparse-Quadrature methods
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PC Surrogate

=)
AE) = ) MW(§)
k=0

P
u=f(A)) u="> uWé)
k=0

@ Surrogate can be constructed with any presumed py(\)
— Convenient linear option: A = Ao + A&
@ PDF(&) controls local accuracy of the surrogate over A

— A uniform & implies uniform weighting of the error
residual over A

@ Any forward-UQ method of choice can be used to
construct the surrogate
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Inputs

PC Surrogate Construction for Noisy Functions

@ Quadrature formulae presume a degree of smoothness
— No convergence for a noisy function

e = @ [un©) v©opee)de, k=o.....P
@ Sparse-Quadrature formulae are ill-conditioned and
highly-sensitive to noise
— No convergence with order
— Error grows with increased dimensionality
@ Options in the presence of noise:

@ RMS fitting for PC coefficients
@ Bayesian inference of PC coefficients
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Parameter Estimation in Chemical Systems

@ Forward UQ requires the joint PDF on the input space
— Published data is frequently inadequate

@ Bayesian inference can provide the joint PDF
— Requires raw data ... which is not available

@ At best: nominal parameter values and error bars

@ Fitting hypothesized PDFs to each parameter
nominals/bounds independently is not a good answer
— Correlations and joint PDF structure can be
crucial to uncertainty in predictions
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Inputs

Generate ignition "data" using a detailed model+noise

@ Ignition using a detailed
chemical model for
methane-air chemistry

@ Ignition time versus Initial
Temperature

@ Multiplicative noise error
model

GRI

| GRI+noise

Ignition time (sec)
o
=

@ 11 data points:

di = ti%’li?l(l + O'Ei) 0.01f ‘ \ ‘ | A &
1000 1100 1200 1300
€ ~ N(O, 1) Initial Temperature (K)
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Fitting with a simple chemical model

@ Fit a global single-step 36 .
irreversible chemical 34 h
L
model

CH4 + 205, — COs + 2H,0

R = [CHyJ[Oalks
kk = Aexp(—E/R°T)

@ Infer 3-D parameter
vector (InA,InE,Ino)

@ Good mixing with o
adaptive MCMC when o 200 4%%%n§88°
start at MLE

| 1
8000 10000
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Inputs

Bayesian Inference Posterior and Nominal Prediction

— GRI
== GRI+noise
Fit Model

7

| GRI+noise

o
[

Ignition time (sec)

0.01,

. | . | B
® # % ® 3“ * 1000 1100 1200 1300
Initial Temperature (K)

Marginal joint posterior on

(InA,InE) exhibits strong Nominal fit model is con-
correlation sistent with the true model

NET UQ in Reacting Flow



Inputs

Correlation Slope y and Chemical Ignition

Means Standard Deviations
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@ 4" Order Multiwavelet PC, Multiblock, Adaptive
® o1 max ~ 400 K during ignition transient, x ~ 0.03
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Time evolution of Temperature PDFs in preheat stage

MC MW
0.15F T T T T = 0.15F T T T =
1=0.455 sec t=0.455 sec
2 2
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@ Similar results from MC (20K samples) and MW PC
@ Increased uncertainty, and long high—T PDF tails, in time

NET UQ in Reacting Flow



Inputs

Evolution of Temp. PDF — Fast Ignition Transient

MC MW
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@ Transition from unimodal to bimodal PDFs
@ Leakage of probability mass from pre-heat PDF high—T tail
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Inputs

Time evolution of Temperature PDFs for different x
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@ Bimodal solution PDFs for high uncertainty growth
@ Unimodal for low uncertainty growth, with y ~ 0.044
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Inputs

Central Challenge for UQ in Chemical Kinetic Models

Need joint PDF on model parameters for forward UQ
Joint PDF structure is crucial
Joint PDF not available for chemical kinetic parameters

At best, have

@ Nominal parameter values
@ Bounds, e.g. marginal 5%, 95% quantiles

@ PDF can be constructed by repeating experiments
or access to original raw data

— Neither is feasible

@ Is there a way to construct an approximate PDF without
access to raw data?

— Yes!
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Inputs

Data Free Inference (DF|) (Berry et al., JCP, in review)

@ Intuition: In the absence of data, the structure of the fit
model, combined with the hominals and bounds, implicitly
inform the correlation between the parameters

@ Goal: Make this information explicit in the joint PDF

@ DFI: discover a consensus joint PDF on the parameters
consistent with given information:
— Nominal parameter values
Bounds
The fit model
The data range
... potentially other/different constraints
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Inputs
Data Free Inference Challenge

Discarding initial data, reconstruct marginal (InA, InE) posterior
using the following information

@ Form of fit model

@ Range of initial temperature

@ Nominal fit parameter values of InA and InE

@ Marginal 5% and 95% quantiles on InA and InE

Further, for now, presume
@ Multiplicative Gaussian errors
@ N = 8 data points
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DFI Algorithm Structure

Basic idea:
@ Explore the space of hypothetical data sets
— MCMC chain on the data
— Each state defines a data set
@ For each data set:

— MCMC chain on the parameters

— Evaluate statistics on resulting posterior

— Accept data set if posterior is consistent with
given information

@ Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(AlY) = [Hp Alyi) r/K
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DFI Uses two nested MCMC chains

@ An outer chain on the data, (2N + 1)—dimensional
— Generally high-dimensional
— N data points (X,y;) + o
— Likelihood function captures constraints on
parameter nominals+bounds

@ An inner chain on the model parameters
— Conventional MCMC for parameter estimation
— Likelihood based on fit-model
— parameter vector (InA,InE,Ino)
@ Computationally challenging
— Single-site update on outer chain
— Adaptive MCMC on inner chain
— Run multiple outer chains in parallel, and
aggregate resulting acceptable data sets
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Inputs

Short sample from outer/data chain
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Inputs
Reference Posterior — based on actual data

! ! ! ! — 108
L 11078
| | | | -~ 10.76
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NET UQ in Reacting Flow



Inputs

Ref + DFI posterior based on a 1000-long data chain
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Inputs

Ref + DFI posterior based on a 5000-long data chain
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Inputs

Marginal Pooled DFI Posteriors on InAand InE
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Chall

Challenges in Forward PC UQ — High-Dimensionality

@ Dimensionality n of the PC basis: & = {£1,...,&n}
— number of degrees of freedom
— P+ 1= (n+p)!/nlp! grows fast with n
@ Impacts:
— Size of intrusive system
— # non-intrusive (sparse) quadrature samples
@ Generally n = number of uncertain parameters
@ Reduction of n:
— Sensitivity analysis
— Dependencies/correlations among parameters

— Identification of dominant modes in random fields
Karhunen-Loéve, PCA, ...

NET UQ in Reacting Flow



Chall

Challenges in Forward PC UQ — Non-Linearity

@ Bifurcative response at critical parameter values
@ Rayleigh-Bénard convection
@ Transition to turbulence
@ Chemical ignition
@ Discontinuous u(A(&))
@ Failure of global PCEs in terms of smooth ¥y()
@ & failure of Fourier series in representing a step function
@ Local PC methods
@ Subdivide support of A(§) into regions of smooth uo A\(£)
@ Employ PC with compact support basis on each region
@ A spectral-element vs. spectral construction
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Challenges in Forward PC UQ — Time Dynamics

Systems with limit-cycle or chaotic dynamics
Large amplification of phase errors over long time horizon
PC order needs to be increased in time to retain accuracy
Remedies
@ Time shifting/scaling
@ Choose smooth observables
@ Futile to attempt representation of detailed turbulent
velocity field v(x,t; A\(§)) as a PCE
— Fast loss of correlation due to energy cascade
— Problem studied in 60’s and 70’s
@ Focus on flow statistics, e.g. Mean/RMS quantities

@ Well behaved
@ = Use non-intrusive methods with DNS/LES of turbulence
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Closure
Closure

@ UQ is increasingly important in computational modeling
@ Probabilistic UQ framework

@ PC representation of random variables
@ Utility in forward UQ

— Intrusive PC methods
— Non-intrusive methods

@ Utility in inverse problems — surrogates

— Bayesian inference
— Model validation

@ Need for probabilistic characterization of uncertain inputs

@ Correlations important for uncertainty in predictions
@ DFI = joint PDF consistent with available information
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