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Goals of Presentation

• DOE Gen-IV S-CO2 Research Program Program

– Major Research Areas

• Testing

– Brayton and Compression Loop Descriptions

– Compressor Performance Mapping

– Breakeven Power Generation

– Mixtures

– Condensation Cycles

– Thrust Bearing Heating

• Modeling

• 10 MWe Development and Demonstration Program Plans and Cost

• Ability of Sandia S-CO2 Brayton Loop to Reproduce Other Cycles



DOE Supercritical CO2 Program 

Description
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Key Technology

Turbo- Alternator Compressor Design 

with Gas Foil Bearings  ( ~24” Long by 12” diameter)

Technology for Small Scale System

Tie Bolts (Pre-stressed)

Turbine

Compressor

Laby Seals

Journal Bearing
Thrust Bearing

Stator 

Water Cooling        PM Motor Generator

Low Pressure Rotor Cavity

Chamber (150 psia)

Gas-Foil Bearings

Patent Application is in Process for All major Features of this Design
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Inventory Control 
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Supercritical CO2 Brayton Loop 

Final Design, Currently Existing, and Alternative Layouts
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Mapping
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Sandia S-CO2 Compression Research Loop

• Sandia S-CO2 compression 

loop, consists of a compressor, 

heater, flow control valve, and 

chiller

• Instrumented with T,p sensors 

at 4 key state points, and a 

density meter at compressor 

inlet

• Used for mapping compressor 

performance near the critical 

point, bearings & seals R&D, 

windage tests, fluid mixtures 

and natura circlation
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Performance Maps 
Barber-Nichols Model Predictions



Compressor Inlet Conditions for

Map Measurements (50 krpm) 

Performed September 2010 at Sandia
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Generalized Measured and Predicted Maps 
Modified ideal head coefficient versus modified flow coefficient

J. Dyreby (Univ. of Wisconsin Madison)  

Similar Results by Bob Fuller (Barber-Nichols)
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Break-Even Power Generation
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TAC-B
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Break-Even Power Production

Summary and Conclusions

• Simple Recuperated Brayton configurations have just enough heater 

power to reach break-even conditions with 260 kW of heater power

• Too much flow in the re-compression Brayton cycle to make power in both 

TACs 

• Break-even at 350/430 F Main-TAC-A and Re-TAC-B

• Main-compressor: Peak Temperatures to 400 F, 3.2 kWe

• Re-compressor: Peak Temperatures to 600 F, 8 kWe, ~ 6%

• Off design models predict  these break-even performance parameters for 

power, rpm and TIT.

• Successful startup/preheat procedures implemented 



Mixtures



S-CO2 Compression Loop Used to Measure 

Effects of Gas Mixtures:  Motivation is Efficiency Improvements
Measured (EOS: Tcrit, Pcrit, Compressor Maps)
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CO2-Butane Mixture
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1) Gas Mixtures can be used to Increase or Decrease the Effective Critical Point.

2) Gas Brayton/Rankine cycles can increase the cycle efficiency 

with these mixtures compared to pure CO2



With a Low Temperature S-CO2 Power Cycle
160 C Turbine Inlet Temperature With Dry Cooling (at 47 C)

Eff=18.1% with CO2/Butane Mixture 

Eff=14.5 % with pure CO2

CO2 + 10% Butane CO2

Inlet Values Variable Name Units Value Value

Turbine Inlet T T.5 K 433.15 433.15

Fractional Pressure drop f.dp 0.0071 0.0071

Compressor Pressure Ratio r.c 2.64 2.21

Compressor Inlet Pressure p.1 kPa 8500 8500

Compressor Inllet Temperature T.1 K 320 320

Mass flow rate mdot kg/s 50 50

Split flow frac thru chiller f.split 0.8272 0.6074

Recup Approach Temp dT.appr K 4.00 4.00

Compressor Isentropic Eff 0.85 0.9 0.921954446 0.921954446

Re Comp Isen Efficiency 0.87 0.9 0.87 0.87

Turbine Isen Effic 0.9 0.93 0.965489385 0.965489385

Fraction of Carnot 0.691 0.555

Carnot Efficienc 0.261 0.261

Power

Heat Transferred in HP leg of LT Recup kW 6706.41 5234.17

Heat Transferred in LP leg of LT Recup kW 6706.41 5234.17

Heat Trnsfrd in HP leg of HT recup kW 0.00 0.00

Heat trnsfrd in LP leg of HT recup kW 0.00 0.00

Rx Pwr P.Rx kW 7204.99 5493.44

Main Comp Pwr P.Comp kW 448.39 444.74

Maon Comp Pwr b P.Comp.B kW 550.24 300.62

ReComp Pwr P.ReComp kW 376.16 828.52

Turb Pwr P.turb kW 2675.32 2369.87

Chiller Heat Trnsfr Q.Chill kW 5904.46 4697.44

TAC Pwr P.TAC kW 1300.53 796.00

P.TAC-chk kW 1300.53 796.00

Eff Cycle 0.181 0.145

Substantial improvement in efficiency using S-CO2 power cycle using CO2 Butane Mixture



Condensation
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- At Sandia, ongoing research into analysis of 

advanced S-CO2 power cycles:

- reheat, condensing, intercooling, etc.

-This will require compressor and chiller 

operation in a variety of new, unproven 

operating regimes

- Experimental tests have been performed to 

verify performance under these conditions

Condensation Motivation



Test Equipment
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-Tests used the Sandia S-CO2

compression loop, which 

consists of a compressor, 

heater, flow control valve, and 

chiller.  

- Instrumented with T,p

sensors at 4 key state points, 

and a density meter at 

compressor inlet

- Previously used for mapping 

compressor performance at 

the critical point, bearings & 

seals R&D, windage tests, etc.
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Condensation Conclusions

• Both Tube and Shell and PCHE can be used to 

condense CO2

• Significance:   Brayton Cycle can improve cycle 

efficiency by using condensation when environmental 

conditions permit.

• S-CO2 Power cycles are not constrained to operate only 

at the critical point

– Appears so far that the compressor inlet can be positioned at 

different T,p to improve efficiency depending on environmental 

conditions (night, day, summer, winter, latitude).



Gas-Foil Bearings
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Gas Foil Bearings

• At near supercritical pressures 

losses are large

• Strongly sensitive to radius and 

frequency

– Penalizes small high speed 

systems

• Requires reduced rotor cavity 

pressure

• Model developed for Air and 

Steam 

– Not supercritical CO2

– Model is accurate for S-CO2

rrotord LrCPwr 34
(Re) 
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Gas Foil Bearings
Model for Gap Thickness, Power, Heating,Temperature

Tom Conboy

• Model is currently for laminar flow.

• Needs upgrade to turbulent to account for real gas

• Effects with high Reynolds numbers

due to high density, high velocity, low viscosity

S-CO2 Gas-Foil Thrust Bearing Pads Reynolds Model for Pressure Under Pad 

u

D
Re



Natural Circulation Flow

And

Decay Heat Removal



Natural Circulation Summary

• Powerful Natural Circulation Forces

– Large density changes with small temperature changes near critical point

• Developed Simple Scoping Calculation Models in Excel

– Based on theory described by D. Milone

– Validated against experiments in a ½” OD Loop 72” Tall

• Modified Scoping Model to Apply it to 

– Reactors, Heat Exchangers, Gas-Chiller

– Evaluated Proposed SNL Experiment

• Developed a 3 D CFD model by modifying a fire code C3D

– Implement Nist Calls

– Modified Energy Equation to use Enthalpy

– Verified against D. Milone Report

– Explored Natural Circ in Rx, with HXs and with Gas Chiller



Natural Circulation 

in S-CO2

Gas Cooled Fast 

Reactor (GCFR-CO2) 

A)  Experiment (Milone)

B)  Scoping Model

C)  C3D Model 

D)  Geometry 
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Natural Convection Flow in GFR-SCO2

Reactor

Turbine/Compressor/Generator

Recuperators

Rejection
Heat Exchanger
Gas Chiller

Split Flow

Not to Scale

Inventory Control
H hot leg

H cold leg

C3D CFD Model

Natural Circulation is Possible Through
The S-CO2 Bratyon Cycle  even with Recuperators

 



S-CO2 Natural Circulation Tests 
are planned for Compression Research Loop

Need to Switch the location of the Cooling and Heating

Tests will provide measured data at high power levels 20-50 kW 

in complicated Geometries



Conclusions
• S-CO2 Power Conversion Systems  

– Smaller, Simpler,  As/more Efficient Than Existing Gas or Steam Power Systems 

in the (500-525 C) temperature range

– Better Materials Compatibility

– Can be built with existing technologies

– Models of System and Component Performance are Accurate

– Growth Potential (performance exceeds existing technologies)

• Higher Temperatures (750 C)  >50% Efficiency

• Smaller 

• Fluid Mixtures to modify supercritical properties to higher or lower temperatures

• PCHE and Tube and Shell HXs can be operated in the condensing mode with no changes

• Inter-cooling with higher pressure ratios (small size means easier to implement)

– IC allows for Higher Pressure systems to increase efficiency 

• Re-heat is an effective way to increase efficiency

– Higher Temperature Ability and Smaller Size

• Cost competitive higher efficiency power systems for all heat sources

– Advanced cycles may increase SMR efficiency to 38% for LWR and 50 % for 

LMRs with a simpler and smaller plant

– Useful for all heat sources (Nuclear, Solar, Fossil, Geothermal)

– Numerous early non-nuclear Products (Marine, Fossil, Solar)

– Can improve the economics of nuclear systems

– Dry Cooling is Possible


