

Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter

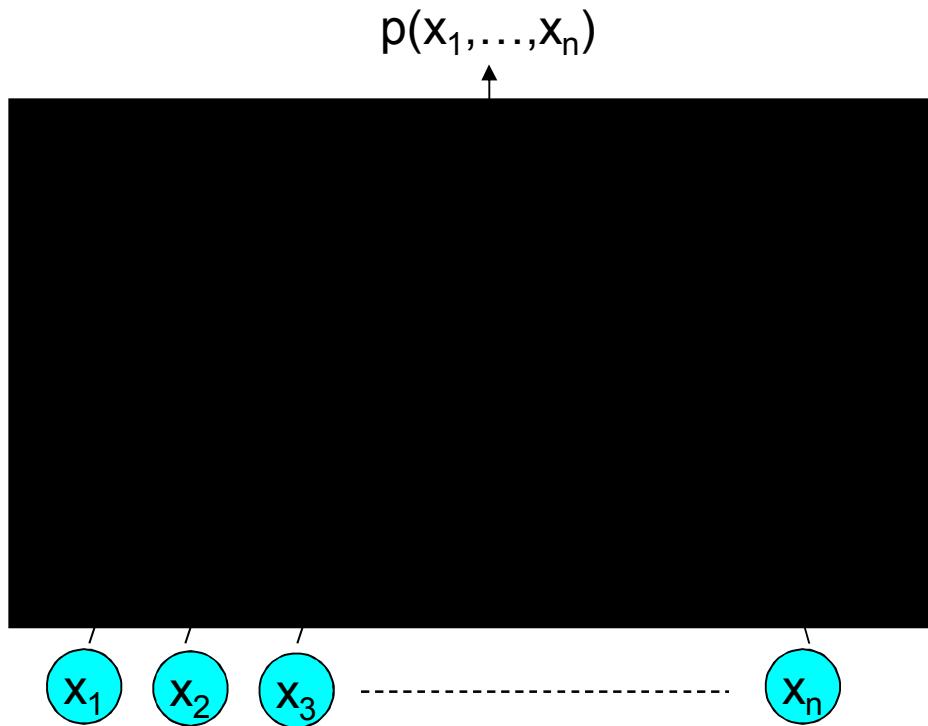
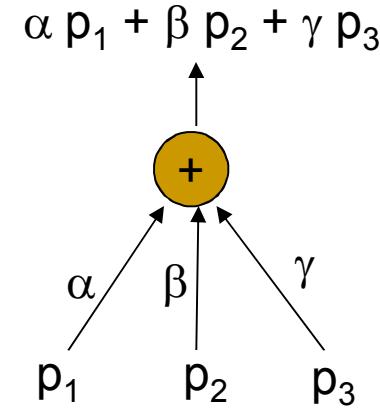
C. Seshadhri (Sandia National Labs, Livermore)

Joint work with
Nitin Saxena (Hausdorff Center for Mathematics)

The problem of PIT

- Polynomial identity testing: given a polynomial $p(x_1, x_2, \dots, x_n)$ over F , is it **identically zero**?
 - All coefficients of $p(x_1, \dots, x_n)$ are zero.
 - $(x+y)^2 - x^2 - y^2 - 2xy$ is identically zero.
 - So is: $(a^2+b^2+c^2+d^2)(A^2+B^2+C^2+D^2)$
 - $(aA+bB+cC+dD)^2 - (aB-bA+cD-dC)^2$
 - $(aC-bD-cA+dB)^2 - (aD-dA+bC-cB)^2$
 - $x(x-1)$ is NOT identically zero over F_2 .

Circuits: Blackbox or not



We want algorithm whose running time is polynomial in size of the circuit (that includes # var, degree)

- Non blackbox: can analyze structure of C
- Blackbox: cannot C
 - Feed values and see what you get

A simple, randomized test

If output is 0, we guess it is identity.
Otherwise, we know it isn't.

- [Schwartz80, Zippel79] This is a randomized blackbox poly-time algorithm.
- Big big open problem: Find a deterministic polynomial time algorithm.
 - We would really like a black box algorithm
 - Base field Q is often of special interest

Why?

- Oh come on, it's an interesting mathematical problem. Do you need a reason?
- [IK04, Agr05] Derandomization implies circuit lower bounds
- [AKS] $(x + a)^n = x^n + a \pmod{n}$
- [L, MVV] Bipartite matching in NC?...
- Many more

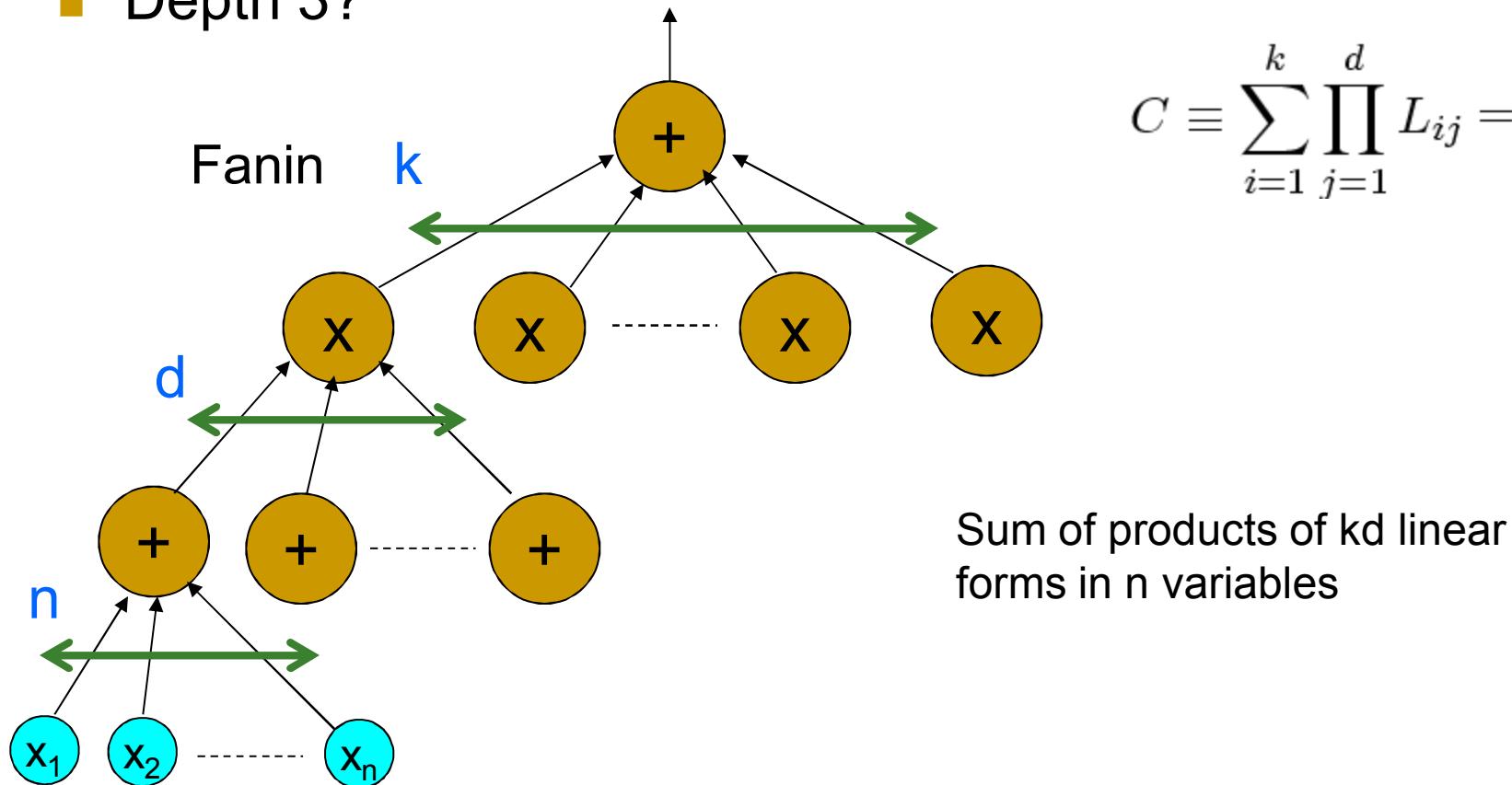
What do we do?

George Pólya

If you can't solve a problem, then there is an easier problem you *can* solve. Find it.

Get shallow results

- Let's restrict the depth and see what we get
- Depth 2? Non-blackbox trivial!
 - [GK, BOT, ..., KS] Polytime with blackbox
- Depth 3?



$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{ij} = \sum_{i=1}^k T_i$$

Some examples

■ Over \mathbb{Q}

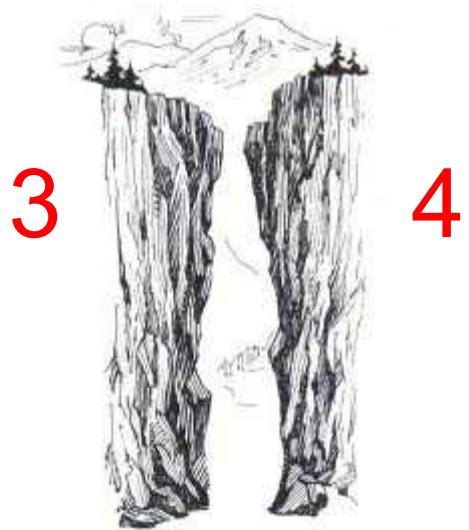
$$(x+z)(y+z) - xy - z(x+y+z) = 0$$

$$\begin{aligned} x_1x_2x_3(2y + x_1 + x_2 + x_3) - (y + x_1)(y + x_2)(y + x_3)(y + x_1 + x_2 + x_3) \\ + y(y + x_1 + x_2)(y + x_2 + x_3)(y + x_1 + x_3) = 0 \end{aligned}$$

■ Over \mathbb{F}_2 [Kayal Saxena 05]

$$\begin{aligned} \prod_{\sum_i b_i=0} (b_1x_1 + b_2x_2 + b_3x_3) + \prod_{\sum_i b_i=1} (y + b_1x_1 + b_2x_2 + b_3x_3) \\ + \prod_{\sum_i b_i=0} (y + b_1x_1 + b_2x_2 + b_3x_3) = 0 \end{aligned}$$

Some good news



- [Agrawal Vinay 08] Chasm at Depth 4!
- If you can solve blackbox PIT for depth 4, then you've solved it for all depths.

Our results

- A new black-box algorithm for depth-3 PIT
 - Parameters n, d, k (think of k as constant)

$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{ij}$$

- For any field F : in time $\text{poly}(nd^k)$, we can generate a hitting set S of tuples in F^n
 - For every non-identity C , there is tuple α in S , st $C(\alpha) \neq 0$
 - Even for $F = F_2$ and $k=3$, no poly-time black box algorithm known

Previously...

- So what's the best black-box running time
 - Parameters n, d, k (think of k as constant)

$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{ij}$$

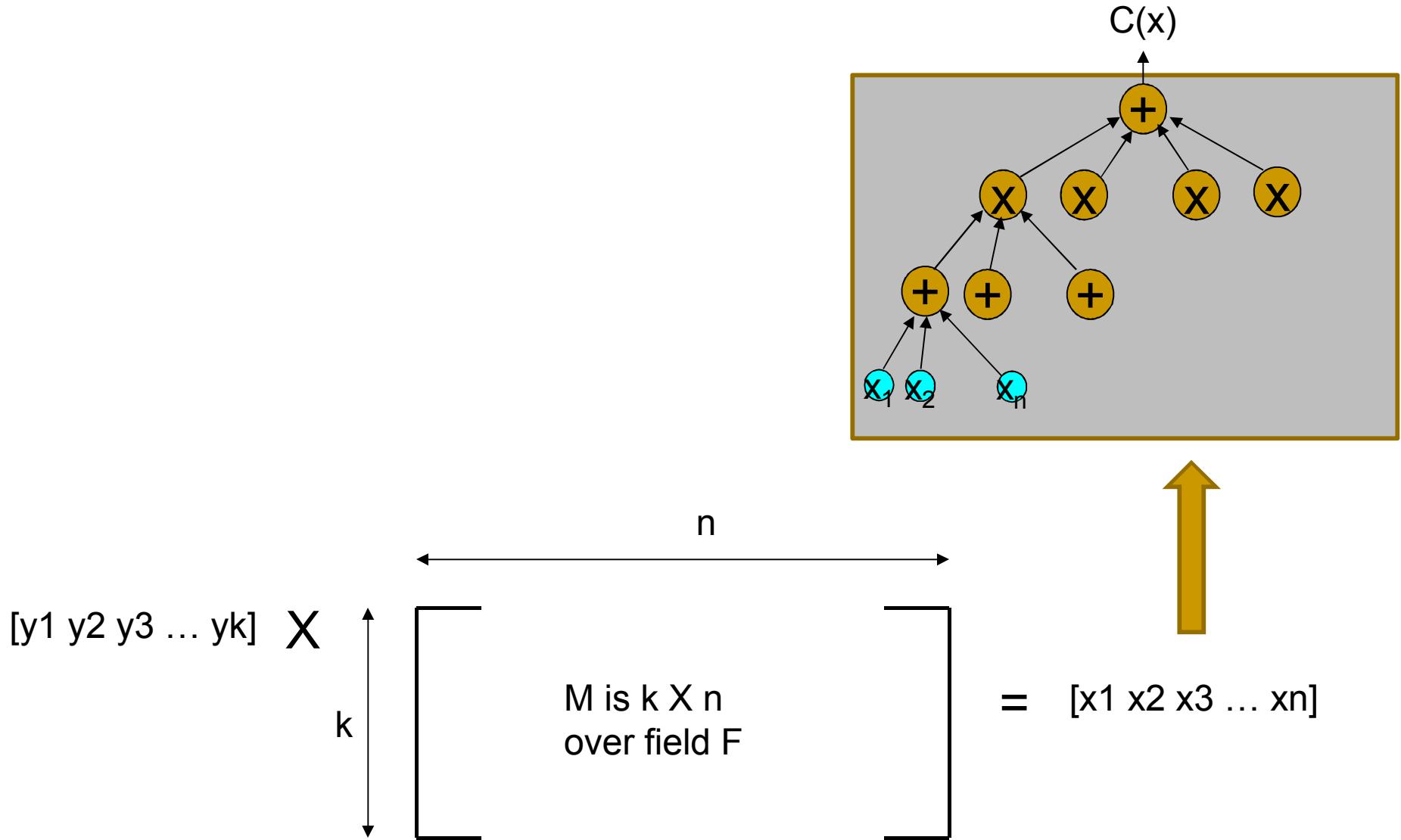
Who	What
[Karnin Shpilka 08] [Dvir Shpilka 06]	$\text{poly}(n)d^{(\log d)^k}$
[Saxena S 09]	$\text{poly}(n)d^{k^3 \log d}$
[Kayal Saraf 09] (over \mathbb{Q})	$\text{poly}(n)d^{k^k}$
[Saxena S 10] (over \mathbb{Q})	$\text{poly}(n)d^{k^2}$

- Matches [Kayal Saxena 05] non-blackbox test of $\text{poly}(n)d^k$

Proudly kitchen sink!

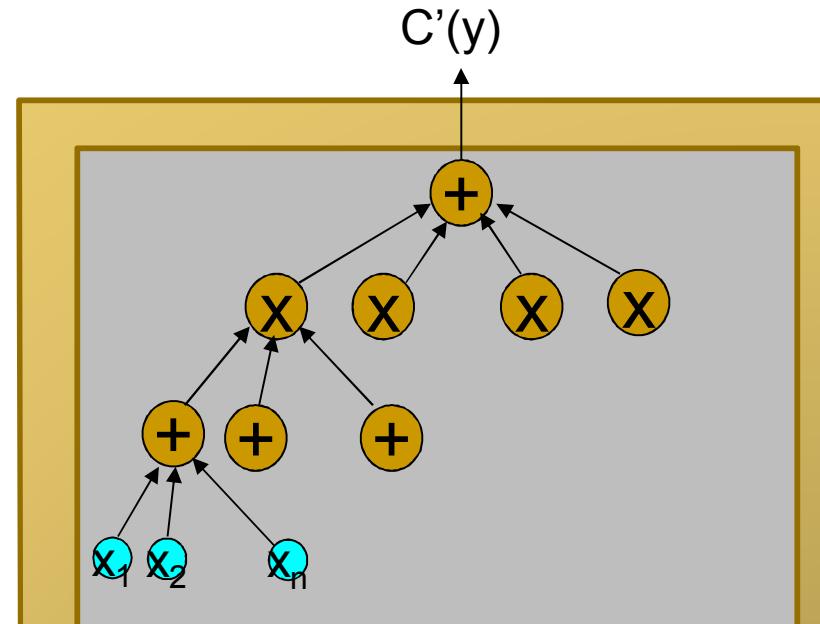
- [Dvir Shpilka 05] **Rank**: a very important concept related to depth-3
- Every previous blackbox result on depth-3 uses rank
- [Kayal Saraf 09] How rank is intimately tied to geometry
- Beautiful, but restrictive
 - Doesn't work too well for finite fields – doesn't yield poly-time algorithms over \mathbb{F}_2
- We employ kitchen sink approach
 - Chinese-remaindering ideas from [Kayal Saxena 05] developed further in [Saxena S 10]
 - Use extractor tools from [Karnin Shpilka 08] ([Gabizon Raz 05])

Cutting down the variables

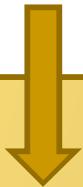


Cutting down the variables

- $C'(y)$ is now a depth-3 circuit over k variables



$[y_1 \ y_2 \ y_3 \ \dots \ y_k]$



$[y_1 \ y_2 \ y_3 \ \dots \ y_k] \ X$

M is $k \times n$
over field F

$= [x_1 \ x_2 \ x_3 \ \dots \ x_n]$

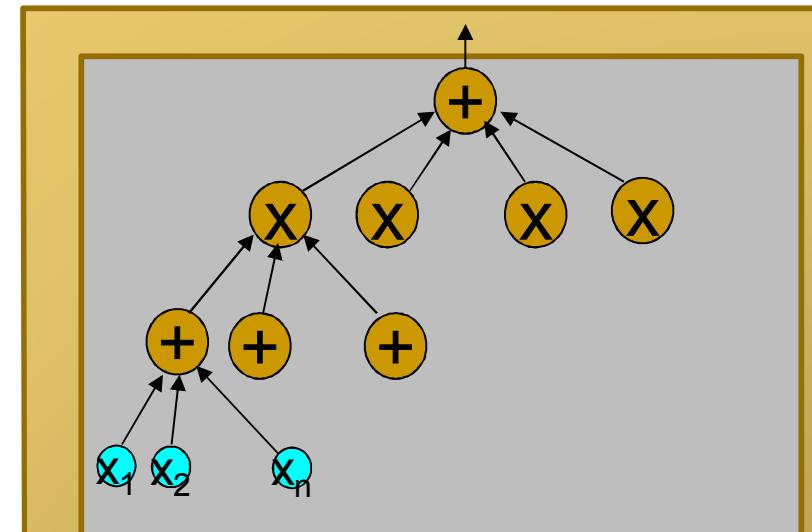
Cutting down the variables

- Theorem: Given n, d, k , in deterministic $\text{poly}(ndk)$ time, we can construct M such that

$C(x)$ is identity $\leftrightarrow C'(y)$ is identity

Technically, a set of M_s

$C'(y)$



$[y_1 \ y_2 \ y_3 \ \dots \ y_k]$

n

$[y_1 \ y_2 \ y_3 \ \dots \ y_k] \times$

k

M is $k \times n$
over field F

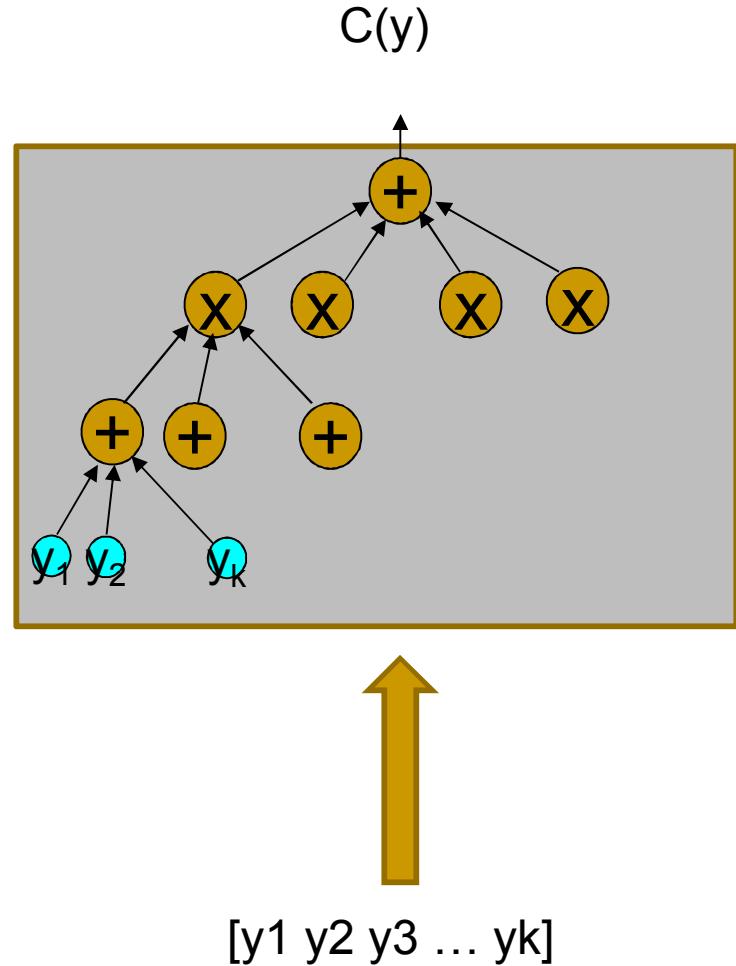
$= [x_1 \ x_2 \ x_3 \ \dots \ x_n]$

A dose of Schwartz-Zippel

- We have reduced general depth-3 blackbox PIT to PIT over depth-3 circuits with k variables
- Schwartz-Zippel Lemma:
Let $|T| > d$ be a subset of F , and $f(y_1, \dots, y_k)$ be polynomial of degree d .

For some y in T^k , $f(y) \neq 0$

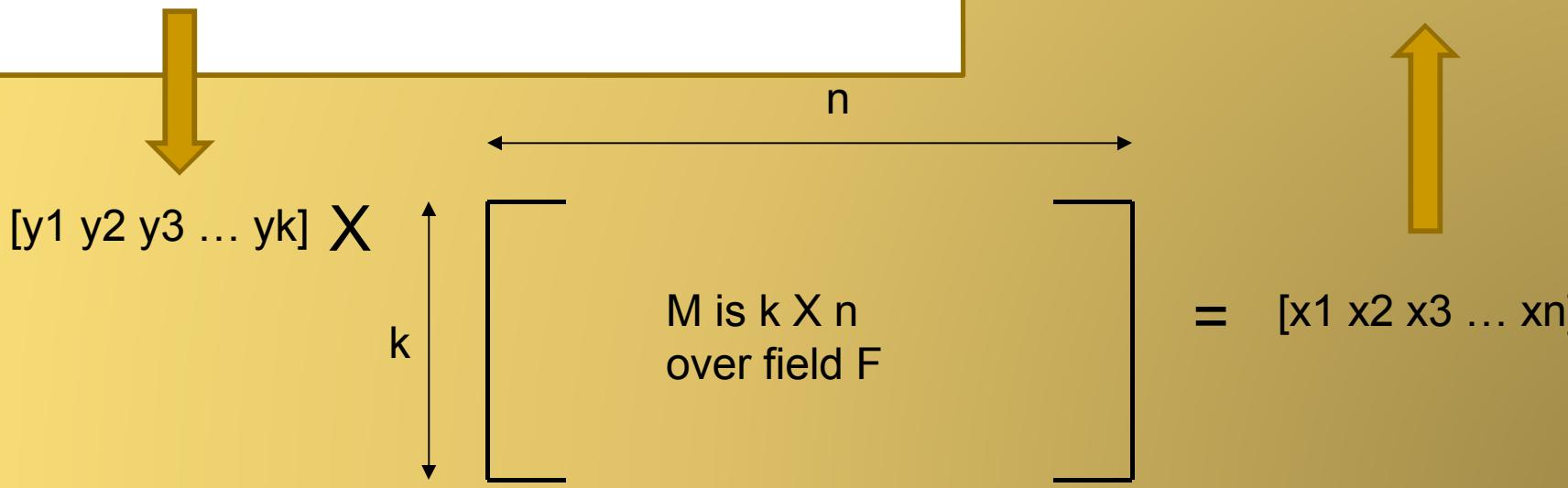
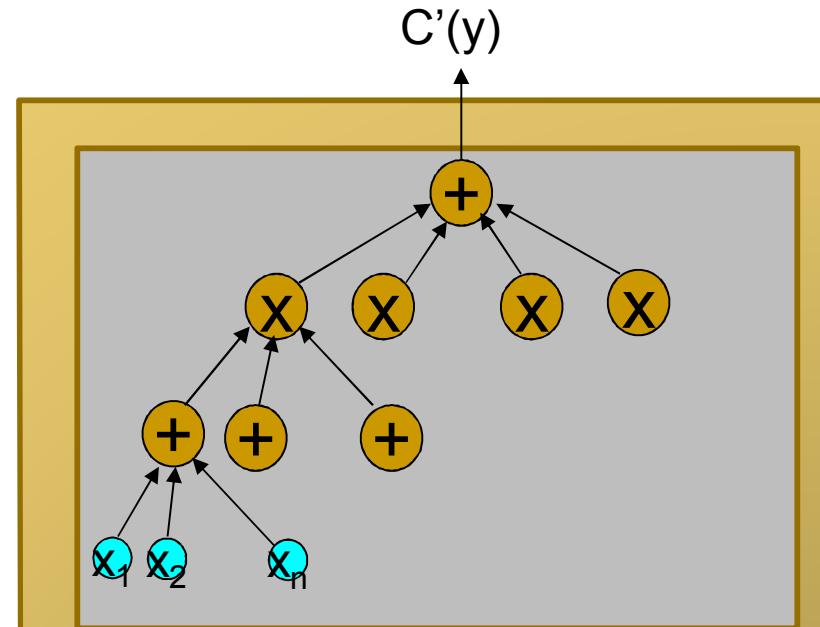
- So we get hitting set for depth-3 identities.



What's the matrix?

- Matrix comes from extractor constructions. Basically, it preserves low dimensional subspaces
- [Gabizon Raz 05], [Karnin Shpilka 08]

$[y_1 \ y_2 \ y_3 \ \dots \ y_k]$



The Vandermonde transformation

$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{i,j}$$

$$V = \begin{bmatrix} & & & k \\ & & & \\ n & \uparrow & \beta^{ij} & \\ & & & \end{bmatrix}$$

$$C' \equiv \sum_{i=1}^k \prod_{j=1}^d L'_{i,j}$$

$$L_{i,j} = \sum_{r=1}^n a_r x_r$$

$$[a_1 \ a_2 \ a_3 \ \dots \ a_n] V = [b_1 \ b_2 \ b_3 \ \dots \ b_k]$$

$$b_r = \sum_{s=1}^n a_s \beta^{sr}$$

$$L'_{i,j} = \sum_{r=1}^k b_r y_r$$

- We are trying to convert C (n -variate) to C' (k -variate)
- [GR05] If L_1, L_2, \dots, L_k are linearly independent, then $L_1 V, L_2 V, \dots, L_k V$ are linearly independent
 - The rank preserving property of this transformation
 - Preserves linear structure of subspaces of dim at most k

The Vandermonde transformation

$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{i,j}$$

$$V = \begin{bmatrix} & & & k \\ & & & \beta^{ij} \\ n & & & \\ & & & \end{bmatrix}$$

$$C' \equiv \sum_{i=1}^k \prod_{j=1}^d L'_{i,j}$$

$$L_{i,j} = \sum_{r=1}^n a_r x_r$$

$$[a_1 \ a_2 \ a_3 \ \dots \ a_n] V = [b_1 \ b_2 \ b_3 \ \dots \ b_k]$$

$$b_r = \sum_{s=1}^n a_s \beta^{sr}$$

$$L'_{i,j} = \sum_{r=1}^k b_r y_r$$

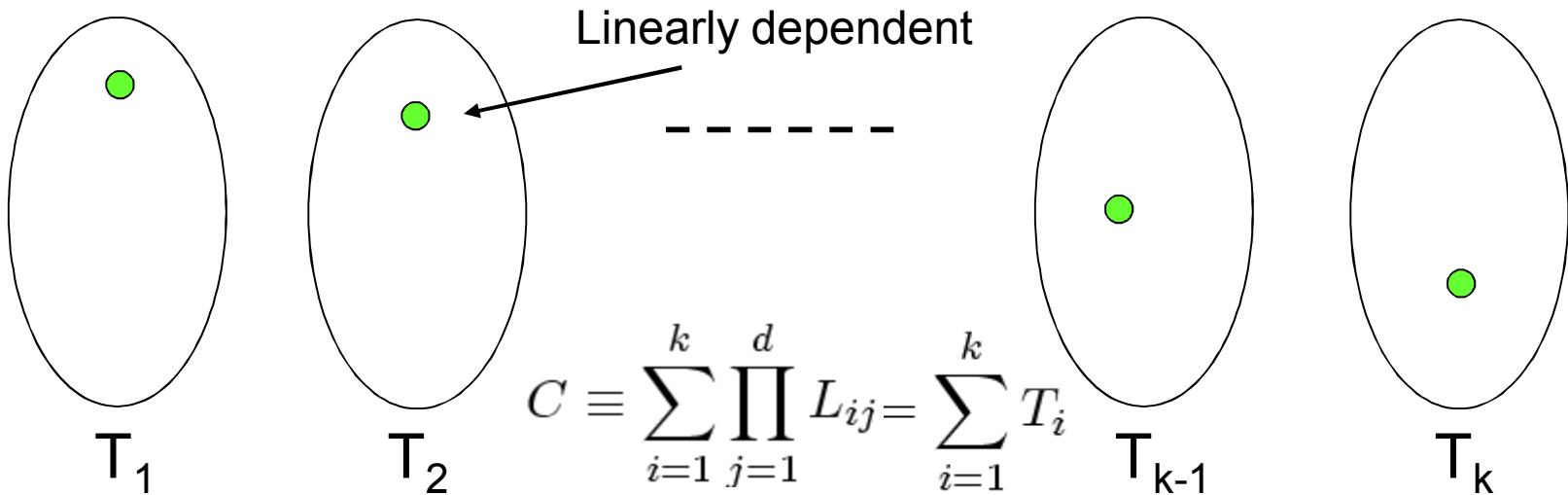
- For setting values, observe that transpose of V is the desired M

$$x_i \rightarrow \sum_{j=1}^k \beta^{ij} y_j$$

- Call this $\Psi(C) = C'$: want to argue that $\Psi(C)$ is identity iff C is identity

Linear dependencies

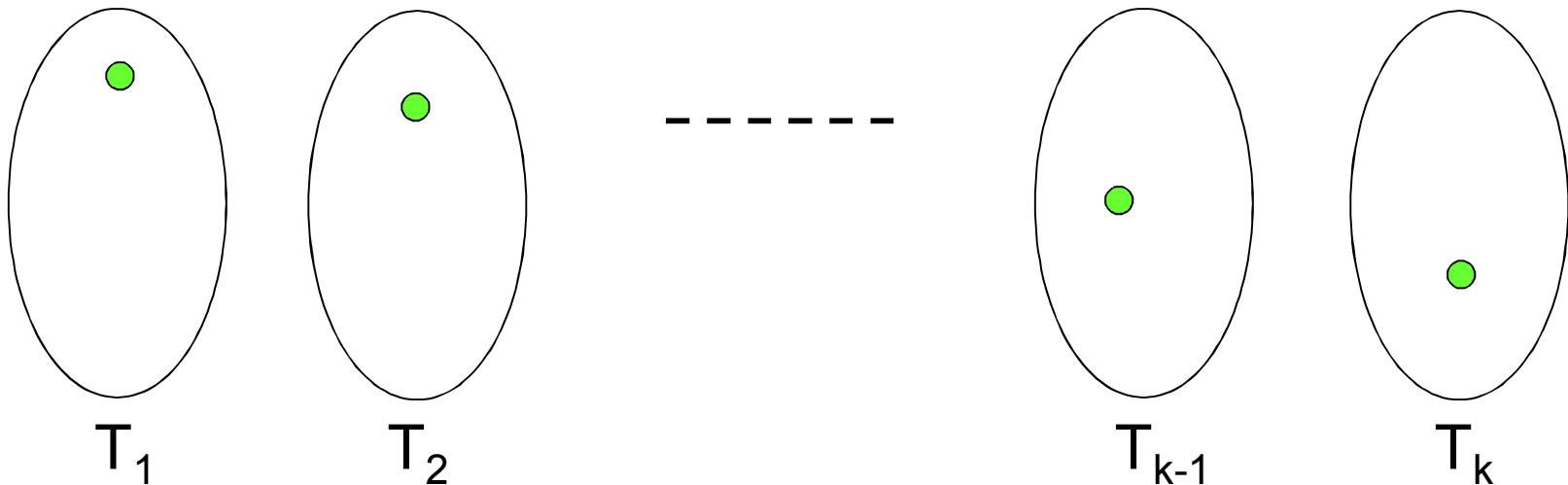
$$\begin{aligned}\prod L_i + \prod M_j + \prod N_k = 0 &\quad \longrightarrow \quad M_j = \alpha N_k + \beta L_i \\ \prod M_j = - \prod N_k \pmod{L_1} &\end{aligned}$$



- For all L_1, L_2, \dots, L_{k-1} , there exists L_k in linear span on $(L_1, L_2, \dots, L_{k-1})$

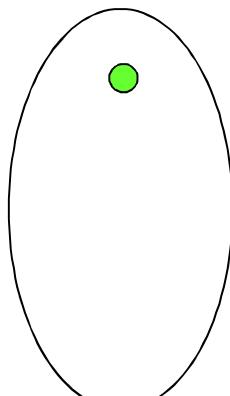
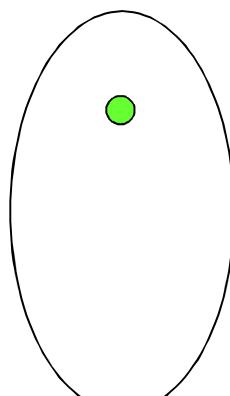
The converse

- [Kayal Saxena 05], [Saxena S 10] (A Chinese Remainder Theorem for depth-3)
 $C \neq 0$ iff there exists $L_1, L_2 \dots L_{k-1}$, s.t. for all L_k , L_k is not in the linear span of $(L_1, L_2 \dots, L_{k-1})$
- So there exist low rank certificates of non-identitiness



The converse

- [Kayal Saxena 05], [Saxena S 10] (A Chinese Remainder Theorem for depth-3)
 $C \neq 0$ iff there exists $L_1, L_2 \dots L_{k-1}$, s.t. for all L_k , L_k is not in the linear span of $(L_1, L_2, \dots, L_{k-1})$
- By rank preserving property:
In $\Psi(C)$, there exist $\Psi(L_1), \Psi(L_2) \dots \Psi(L_{k-1})$, s.t. for all $\Psi(L_k)$, it is not in span of $(\Psi(L_1), \Psi(L_2), \dots, \Psi(L_{k-1}))$
So $\Psi(C) \neq 0$



T_1

T_2

T_{k-1}

T_k

The argument really is that simple.

So...

- Most of what I said is technically false, but is morally correct
 - So you get the basic idea
- That closes the gap between whitebox and blackbox testing for depth-3 PIT
- Running time is nd^k for any field
- Transformation to k -variate PIT is truly polynomial, and is an important tool
 - We can now shift focus to low degree depth-3 PIT

The road ahead

- Umm...solve identity testing
 - Surely, something intermediate...?
- Get truly polynomial (black-box or otherwise) for depth 3
 - How to remove exponential dependence on k ?
- Any more results along this line of work?
 - No, I think we milked this one out

It's not o-k

- This is a very deep issue – the exponential dependence on k appears in almost all results
- Why? Because all results reduce the identity to k -variate or k -sparse.
- And then they just do a brute-force search
- We don't really understand what it means when the sum of k products cancel out (esp. when k is large)

Thank you!