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• Out-of-plane resonators
• Planar lithography
• Many patterns possible
• Cavity geometry independent
of resonator pattern

• Scalable
• Layer-by-layer   3-D

Membrane Projection Lithography: MPL 
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Projection at 45⁰
Preserves Pattern

Shape in Cubic Geometries

Real Membranes result in Linewidth Clipping

Sources of MPL Pattern Distortion

Multiple Evaporations result in Linewidth Thinning
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MPL Enables a Rich Variety of
3-D Metamaterial Resonator Topologies



Current MPL
Process Node

Specific MPL Process Flow

4x4 µm cubic cavity
1 µm SU-8 walls
300 nm PMMA membrane
Polyimide backfill
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Specific MPL Process Flow
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MPL : Large Area Fabrication Method

4” wafer1 cm2 die



2 µm

Extending MPL to MultiLayers



MultiLayer Decorated MPL

1st Layer 
decorations

2nd Layer 
decorations
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MPL For Fabrication of Resonant
Metamaterial Strategies

To access:

Negative Permittivitty

Negative Permeability

Negative Index

Geometrical
Resonance

λres

We need:

Electrically Excited Resonators

Magnetically Excited Resonators

Both

Inclusion Type:

Dipole-like metallic inclusions

Real or virtual-loop metallic inclusions

Both

• Applications must be loss-tolerant.
• Inclusions should be significantly sub-wavlength to be in the effective
medium limit.



S-polarization
•B-field excites lowest SRR resonance --- magnetic excitation
•E-field excites second order resonance --- electric excitation

P-polarization
•can’t couple to any SRR resonances

magnetic 
resonance

electric 
resonance

Magnetically Excited Resonator:
Tuning the Effective Permeability

Diffraction
Edge

λres = 22 µm
Unit Cell= 6 µm
Inclusions= 3 µm

~ λ/4
~ λ/7



Extracted Permeability for Magnetically 
Excited SRR Array
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Successfully tuned permeability away from 1.



• Materials can have significantly lower loss than resonant metamaterials
• In order to operate off-resonance and avoid spatial dispersion, inclusions 
must be even smaller relative to the operation wavelength.
• Create artificial dielectrics for IR applications – graded, and spatially 
inhomogeneous designs provided via transformation optics.

To access:

Permittivitty > 1

Geometrical
Resonance

We need:

Electrically Polarizable Inclusions

Operate off-resonance 
(λoperation >>λres)

MPL For Fabrication of Non-Resonant
Metamaterial Strategies



Non-Resonant Metamaterials with MPL 

Work performed in collaboration with David R. Smith (Duke)
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Interferometric Lithography + MPL: 
Route to Large Area Non-Resonant MMs

Exposure dose controls inclusion size

IL exposures cover 
entire1cm2 die in 10 sec~ 200 nm inclusions ~ 400 nm inclusions



Applied MPL: Artificial Dielectric
Waveguides, Lenses and Transformation Optics

N. Kundtz and D.R. Smith, Nat. Mater. 129-132 
(2010).

Can we realize thick TO
designed IR optics?

Combining IL and contact lithography
yields structures with controllable in-plane
variation in inclusion size/density. 

Waveguides



Conclusions
• MPL is proving to be a manufacturable approach to 3D metamaterial 

fabrication
• We have demonstrated IR scale fabrication in both dielectric and metallic 

metamaterial structures

Future Work

• Fabricated Multi-layer impedance matched absorber

• Explore artificial dielectric waveguides and TO designed structures

• Investigate the possibility of directional thermal emission from MPL structures

Conclusions and Future Work


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

