

SALINAS: A Massively Parallel Finite Element Code for Structural Dynamics and Acoustics Analysis

Jerry W. Rouse, Timothy F. Walsh, Garth M. Reese
Sandia National Labs
Albuquerque, NM 87185

161st Meeting of The Acoustical Society of America
Seattle, Washington
23-27 May 2011

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Introduction / Outline

- History
- Domain Decomposition
- Solution Methods
- Element Types
- Structural Acoustics Formulation
- Quadratic Eigenvalue Problem
- Structural Acoustic Tying/Mortars
- Infinite Elements
- Inverse Methods
- Conclusions

History and Intent

- **Created in 1990's as part of Accelerated Strategic Computing Initiative (ASCI) of the US Dept. of Energy**
- **Intended for *extremely* complex finite element analysis**
 - Models with 10s or 100s of millions of DOF
- **Scalability**
 - Ability to solve n -times larger problem using n -times larger number of processors in nearly constant CPU time
- **Code portability**

To Meet ASCI Requirements

- **Massively Parallel**

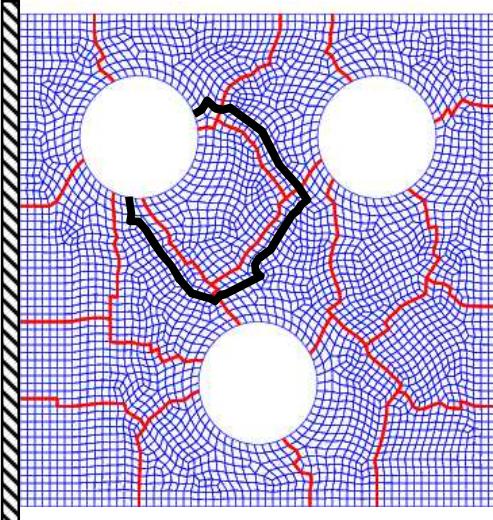
- Distribution of processors (nodes), each with own memory, linked together by a specialized network communication system

- **Employ Domain Decomposition Methods**

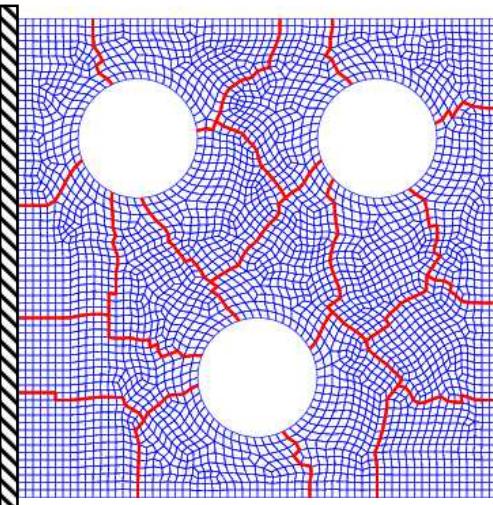
- First performed by Schwarz in the 1870s

- **Began First Using FETI-DP solver**

- “Finite Element Tearing and Interconnecting” (*C. Farhat, et al., 2000*)
 - Versatile iterative solver


- **Current Solvers:**

- FETI-DP and FETI-DPH
 - GDSW (*C. Dohrmann, et al., 2007*)
 - Others



Domain Decomposition

Schwarz Methods
(Overlapping)

Schur Complement
Methods
(Iterative
Substructuring)

- **Decompose model into smaller subdomains**
- **Each subdomain is often assigned to one processor**
- **Two-level methods have “local” subdomain solves and “global” coarse solve**
- **Solve using preconditioned conjugate gradients or GMRES**

Solution Methods

- **Linear and Nonlinear Statics and Transient Dynamics**
- **Eigenanalysis**
 - Real and complex (quadratic)
- **Direct Frequency Response**
- **Random Vibration Analysis**
- **Modal Based Solutions for Transient Dynamics, SRS, Frequency Response**
- **Coupled Nonlinear-Linear Analysis**
 - With Adagio/Presto (*Sandia in-house codes*)

Large Element Library

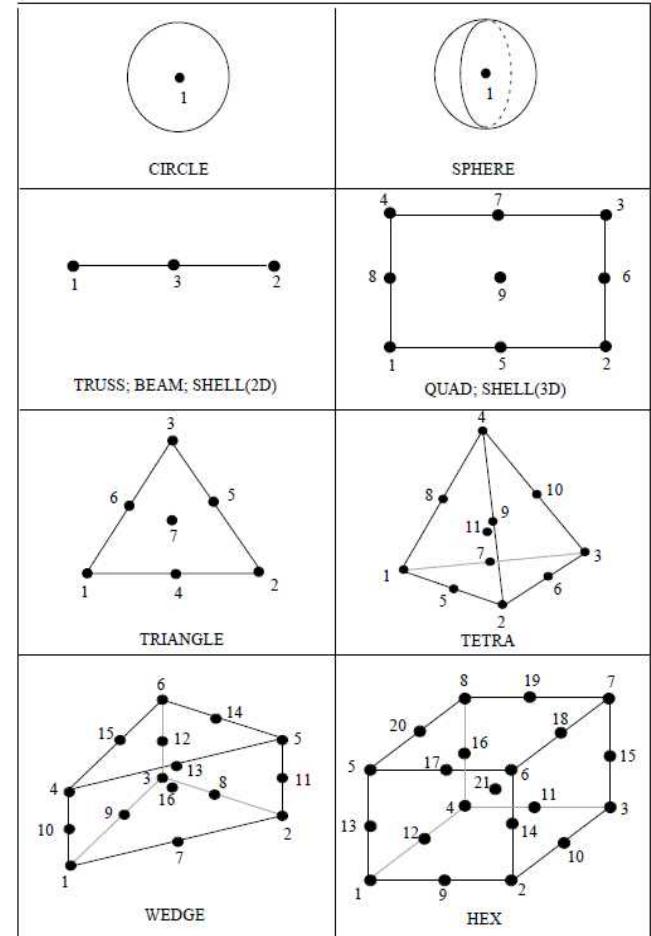
- **Solid Elements**

- Hexahedral, Tetrahedral, Wedge

- **Shell Elements**

- Triangle, Quadrilateral, HexShell (hybrid)

- **Bar/Beam Elements**


- Beam, Truss, Spring, Dashpot

- **Point Elements**

- Conmass (concentrated mass)

- **Specialty Elements**

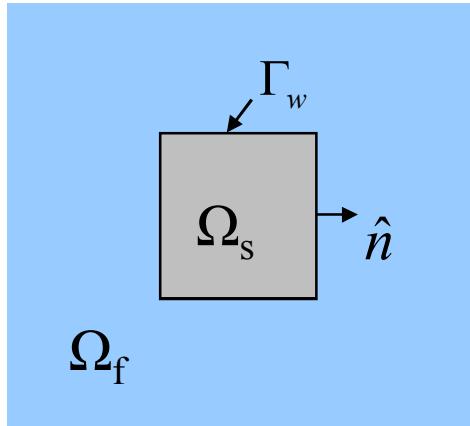
- Iwan, Hys, Shys, Joint2G, Gap

Structural Acoustics

- **Formulations for Structural Acoustics:**

- Scalar Based
 - Velocity potential formulation (*Everstine, 1981, 1997*)
 - Mixed pressure-potential symmetric formulation (*Felippa & Ohayon, 1990; Pinsky, 1991; Ohayon 1996*)
- Vector Based
 - Displacement-based formulation (*Hamdi & Ousset 1978; Belytschko, 1980; Wilson, 1983; Chen 1990; Bermudez 1994*)
 - Space-time formulation (*Harari et al., 1996; Thompson and Pinsky, 1996*)
 - Others ...

- **All fully-coupled formulations (monolithic)**


Structural Acoustics Formulation

- **Applied two-field formulation of Everstine^[1]**
 - Structural displacement
 - Fluid velocity potential
- **Exterior problems straightforward**
 - Compared to other formulations
- **Symmetric, indefinite matrices**
 - Best suited for domain decomposition-based solvers
- **Results in 2nd order equations**
 - Compatible with Newmark beta and alpha time integration
- **Added by Tim Walsh beginning in 2003**

[1] G. C. Everstine, "Finite Element Formulations For Structural Acoustics Problems," *Computers & Structures* **65**: 307-321, (1997).

Structural Acoustics Formulation

Structure: $\rho_s \frac{\partial^2 \vec{u}}{\partial t^2} - \vec{\nabla} \cdot \tau = \vec{f}(\vec{x}, t) \quad \Omega_s \times [0, T]$

Fluid: $\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = 0 \quad \Omega_f \times [0, T]$

where $p = \frac{\partial \phi}{\partial t}$, $\vec{v}_f = -\frac{\vec{\nabla} \phi}{\rho_f}$

Fluid-Structure B.C.'s: $\tau \cdot \hat{n} = -\frac{\partial \phi}{\partial t}$ $\rho_f \frac{\partial \vec{u}}{\partial t} \cdot \hat{n} = -\vec{\nabla} \phi \cdot \hat{n}$

Weak form with applied B.C.'s:

Structure: $\int_{\Omega_s} \rho_s \frac{\partial^2 \vec{u}}{\partial t^2} \cdot \vec{w} d\Omega + \int_{\Gamma_w} \vec{w} \frac{\partial \phi}{\partial t} d\Gamma + \int_{\Omega_s} (\vec{\nabla}^s \vec{w}) \tau d\Omega = \int_{\Omega_s} \vec{f} \cdot \vec{w} d\Omega$

Fluid: $\frac{1}{c^2} \int_{\Omega_f} \frac{\partial^2 \phi}{\partial t^2} \Psi d\Omega - \rho_f \int_{\Gamma_w} \left(\frac{\partial \vec{u}}{\partial t} \cdot \hat{n} \right) \Psi d\Gamma + \int_{\Omega_f} \vec{\nabla} \phi \cdot \vec{\nabla} \Psi d\Omega = 0$

Structural Acoustics Formulation

- Weak form with B.C.'s :

$$\text{Structure: } \int_{\Omega_s} \rho_s \frac{\partial^2 \vec{u}}{\partial t^2} \cdot \vec{w} d\Omega + \int_{\Gamma_w} \vec{w} \frac{\partial \Phi}{\partial t} d\Gamma + \int_{\Omega_s} (\vec{\nabla}^s \vec{w}) \tau d\Omega = \int_{\Omega_s} \vec{f} \cdot \vec{w} d\Omega$$

$$\text{Fluid: } \frac{1}{c^2} \int_{\Omega_f} \frac{\partial^2 \Phi}{\partial t^2} \Psi d\Omega - \rho_f \int_{\Gamma_w} \left(\frac{\partial \vec{u}}{\partial t} \cdot \hat{n} \right) \Psi d\Gamma + \int_{\Omega_f} \vec{\nabla} \Phi \cdot \vec{\nabla} \Psi d\Omega = 0$$

- Applying spatial discretizations (finite element basis):

$$\begin{bmatrix} M_s & 0 \\ 0 & \tilde{M}_f \end{bmatrix} \begin{Bmatrix} \ddot{u} \\ \ddot{\Phi} \end{Bmatrix} + \begin{bmatrix} C_s & L \\ L^T & \tilde{C}_f \end{bmatrix} \begin{Bmatrix} \dot{u} \\ \dot{\Phi} \end{Bmatrix} + \begin{bmatrix} K_s & 0 \\ 0 & \tilde{K}_f \end{bmatrix} \begin{Bmatrix} u \\ \Phi \end{Bmatrix} = \begin{Bmatrix} f_s \\ \tilde{f}_f \end{Bmatrix}$$

Coupling

- Divided fluid equation by acoustic density

- Symmetric, indefinite system (but nonsingular)

Structural Acoustics Solvers/Capabilities

- Full massively parallel functionality
- Hex, wedge, and tetra acoustic elements
- Acoustic coupling with both 3D and shell (2D) structural elements
- Allows for mismatched acoustic/solid meshes
 - Inconsistent Tying
 - Standard Mortars
- Solvers: FETI-DP, GDSW
- Solution Procedures:
 - Frequency Response (frequency-domain)
 - Transient (time-domain)
 - Eigenvalue Analysis (real and quadratic)
- Nonlinear Acoustics – Kuznetsov Equation

Quadratic Eigenvalue Problem

- **Eigenanalysis formulation:**

$$\lambda^2 \begin{bmatrix} M_s & 0 \\ 0 & \tilde{M}_f \end{bmatrix} \begin{Bmatrix} u \\ \varphi \end{Bmatrix} + \lambda \begin{bmatrix} C_s & L \\ L^T & \tilde{C}_f \end{bmatrix} \begin{Bmatrix} u \\ \varphi \end{Bmatrix} + \begin{bmatrix} K_s & 0 \\ 0 & \tilde{K}_f \end{bmatrix} \begin{Bmatrix} u \\ \varphi \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$

- Coupling within damping matrix brings about complex eigenvalues for structural acoustics (non-diagonalizable)

- **State-Space form of time domain:**

$$\underbrace{\begin{bmatrix} M_s & 0 \\ 0 & \tilde{M}_f \end{bmatrix} \begin{Bmatrix} \ddot{u} \\ \ddot{\varphi} \end{Bmatrix}}_{[M] \{ \ddot{r} \}} + \underbrace{\begin{bmatrix} C_s & L \\ L^T & \tilde{C}_f \end{bmatrix} \begin{Bmatrix} \dot{u} \\ \dot{\varphi} \end{Bmatrix}}_{[C] \{ \dot{r} \}} + \underbrace{\begin{bmatrix} K_s & 0 \\ 0 & \tilde{K}_f \end{bmatrix} \begin{Bmatrix} u \\ \varphi \end{Bmatrix}}_{[K] \{ r \}} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$

$$\boxed{\begin{bmatrix} M & 0 \\ 0 & K \end{bmatrix} \{ w \} = \begin{bmatrix} 0 & M \\ -M & -C \end{bmatrix} \{ \dot{w} \} \text{ where } w = \begin{Bmatrix} \dot{r} \\ r \end{Bmatrix}}$$

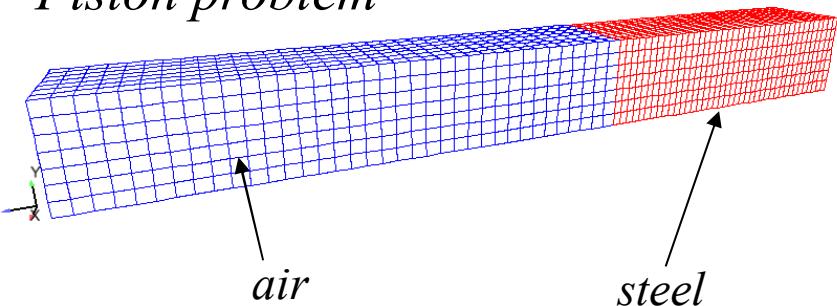
Quadratic Eigenvalue Problem

- **Linear eigenvalue problem :**

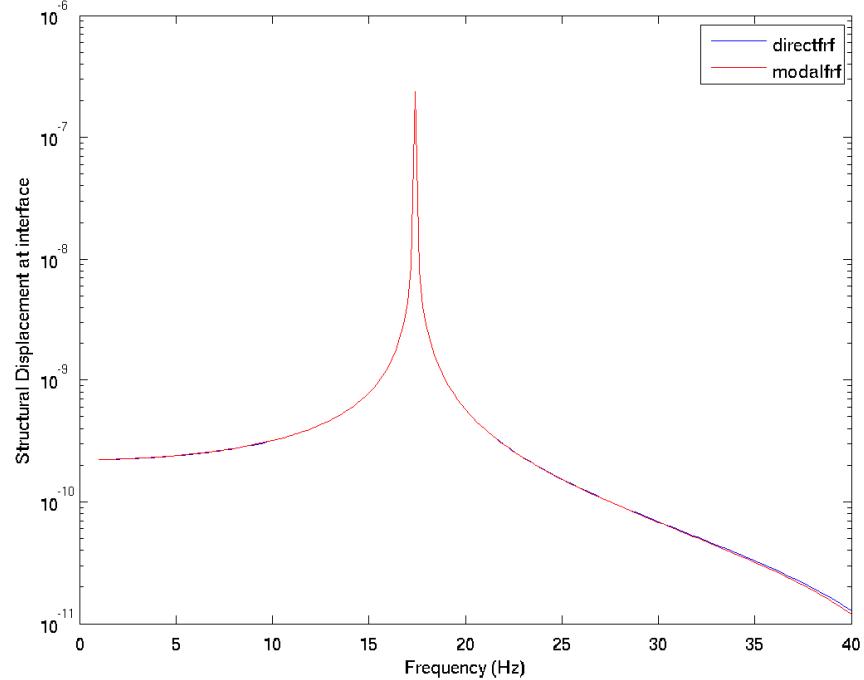
$$\begin{bmatrix} M & 0 \\ 0 & K \end{bmatrix} \{w\} = \begin{bmatrix} 0 & M \\ -M & -C \end{bmatrix} \{\dot{w}\} \text{ where } w = \begin{Bmatrix} \dot{r} \\ r \end{Bmatrix}$$

- **Assume time decay and a complex configuration space:**

$$w = \varphi e^{\lambda t} + \varphi^* e^{\lambda^* t}$$


- φ are complex mode shapes; w is real
- **Solve right *and* left eigenvalue problem**

$$\begin{bmatrix} M & 0 \\ 0 & K \end{bmatrix} [\varphi] = \lambda \begin{bmatrix} 0 & M \\ -M & -C \end{bmatrix} [\varphi] \quad [\varphi]^* \begin{bmatrix} M & 0 \\ 0 & K \end{bmatrix} = \lambda [\varphi]^* \begin{bmatrix} 0 & M \\ -M & -C \end{bmatrix}$$


- **Resulting complex modes used for frequency response function predictions**

Quadratic Eigenvalue Verification

Piston problem

A comparison of structural displacement from directFRF vs modalFRF

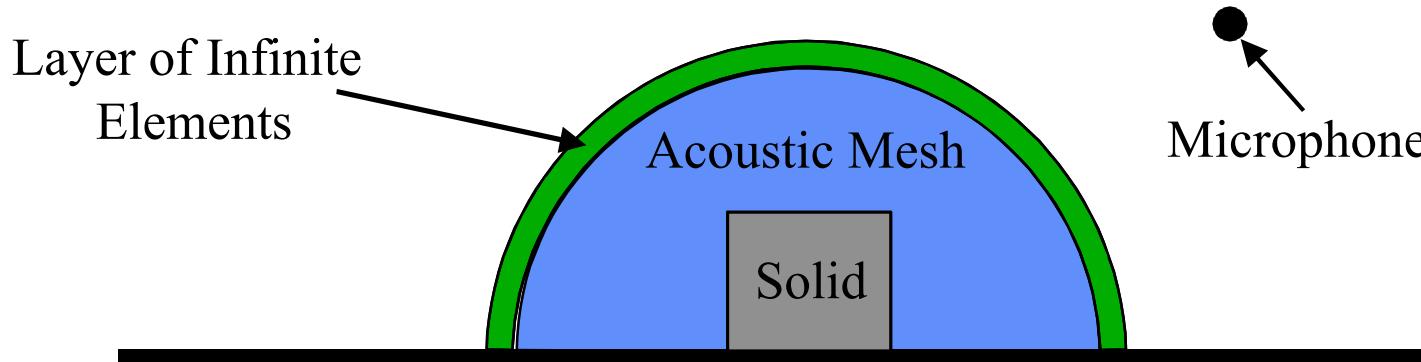
- **DirectFRF:**

$$u(\omega) = \frac{F(\omega)}{-\omega^2 [M] + i\omega [C] + [K]}$$

- **ModalFRF:**

- Use complex modes from quadratic eigenvalue solution

Mismatched Acoustic/Solid Meshes



- **Mesh density requirement inconsistency**
 - Acoustic phase speed < structural (typically)
- **Solution: tying/mortars**
 - Use ghost acoustic d.o.f. on solid nodes at interface, conforming coupling to solid
 - Couple the acoustic d.o.f. now on both sides of wet interface using constraint equations

Infinite Elements Capability

- Provides an asymptotically exact boundary condition for exterior problems
- Allows for computing response at far-field points outside of acoustic mesh
- Currently implementing time-domain, conjugated version of “mapped wave envelope” elements of Astley et al.

Inverse Material Identification Capabilities

- **Joint work with Wilkins Aquino, Cornell University**
- **Determination of material properties given measured experimental displacement data**
 - Allows for different time steps between experimental data and transient dynamics prediction
- **Time and frequency domain**
 - Based on Error in Constitutive Equations (ECE) method
- **Performed at the block level (i.e. homogeneous block) or at the element level (i.e. heterogeneous block)**
- **Solvers: FETI-DP and GDSW**

Conclusions

- Massively Parallel FEM
- Fully Coupled Structural Acoustics
- Quadratic Eigenvalue Solver
- Structural Acoustic Tying/Mortars
- Infinite Elements
- Inverse Methods
- **Salinas is an export controlled code. Shared with other US Government Labs for use.**
- **For Inquiries:**

Joe Jung, PhD. (jjung@sandia.gov)

Manager, Computational Solid Mechanics and Structural Dynamics Department

Sandia National Laboratories

505.844.7436