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Estimating Disease Parameters Using Biosurveillance
Data

 Biosurveillance Data: Time series (counts/day) related to syndromic
data

• Our present work uses ICD-9 codes from hospitals as well as disease models 
to simulate a epidemic or bioterrorist event within a population

 Goal  of this Work: To develop statistical techniques to characterize 
ongoing epidemics from initial/partial biosurveillance data

• Estimate disease parameters : index cases, time of infection, infection rate

• Do so early in the outbreak, with minimal data

• Quantify the confidence in the estimates of disease parameters

 Useful for bracketing outcomes in forward prediction

 Motivation:

• To provide initial conditions for disease models, to be used for planning 
medical interventions, resource allocation etc.
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Bloom, Buckeridge and Cheng, Jour. Am. Med. Informatics. Assoc. (2007) conclude:  “7 day moving 
average filter suppress exactly the short scale features that were the intended object of study”

More sophisticated methods are required.

Biosurveillance Data is Complex 

• Biosurveillance data shows a broad 
range of structures (spikes, weekly 
cycles, seasonal trends, random 
walk properties, missing data)

• “Normal” cycles and trends must be 
discovered dynamically

• Any outbreak will be superimposed 
on this background, and must be 
detected and subtracted from the 
background for analysis

• Background must be accurately 
modeled to differentiate outbreak 
counts from background counts in 
the data
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Steps Used in Our Analysis

 The components of the procedure are:

• Background Modeling/Outbreak Detection from time-series data

 Data contains the outbreak and background/endemic morbidity

• Extraction of the outbreak from the background

 Endemic component needs to be separated from the epidemic component

• Characterization of the outbreak

 Estimation of index cases, time/rate of infection

• Identification of the outbreak

 What was the disease that caused it, given a few competing guesses
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Steps for Detection and Characterization

• Background Modeling/Outbreak Detection from time-series data

 Data contains the outbreak and background/endemic morbidity

• Extraction of the outbreak from the background

 Endemic component needs to be separated from the epidemic component

• Characterization of the outbreak

 estimation of index cases, time/rate of infection

• Identification of the outbreak

 What was the disease that caused it, given a few competing guesses
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Modeling the Background 

 Background Model included a random walk term for long term trends, a zero 
mean weekly cycle, and additive noise

 Model is fit to data by MLE techniques using Kalman filter to calculate the 
likelihood

 Kalman filter provides  both 1-day ahead prediction and the prediction 
uncertainty
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This model provides the basis for both statistical anomaly detection 
and background subtraction capabilities 
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Test of Anomaly Detection Using Anthrax Outbreak Data 

 Background data is from Miami of daily counts of ILI-related codes:

• 487.0 Influenza with Pneumonia

• 487.1 Influenza with other respiratory manifestations

• 487.2 Influenza with other manifestations

 Total outbreak size is 500

• Anthrax outbreak is calculated using a realistic model  with dose dependent 
incubation time  (“Wilkening A2” model)

• Time to seek care model is also included in the model

 Detection threshold set to 3σ

• Kalman filter determines one-step ahead prediction        , as well as the error in this 
prediction 

• Detection occurs if standardized residual 
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Anthrax Data: Start Day = 175

 Background:  ILI ICD-9 codes 
from Miami data

 Red Line: Calculated anthrax 
outbreak from Wilkening A2 
model, plus visit delay; 500 
index cases

Can we detect an anomaly 
in this noisy data, and how 
early?
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Anthrax Data: Start Day= 175 (Detail)

 Details show prediction (red 
dots) along with estimates in 
prediction

 Blue line shows 3σ detection 
on day 5

Model  provides a robust 
method for detecting 
counting anomalies in a 
statistical framework 
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Steps for Detection and Classification

 The components of the procedure are:

• Background Modeling/Outbreak Detection from time-series data

 Data contains the outbreak and background/endemic morbidity

• Extraction of the outbreak from the background

 Endemic component needs to be separated from the epidemic component

• Characterization of the outbreak

 estimation of index cases, time/rate of infection

• Identification of the outbreak

 What was the disease that caused it, given a few competing guesses
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Forward Prediction of Background

 Goal: subtraction of background 
model from data, after 
detection, to isolate epidemic

 Classification module

• Only fits epidemic curve 

• Requires an accurate 
subtraction of background from 
data 

 A the time of a detection, 
background counts must be 
accurately predicted into the 
future

Longer-term predictions are typically valid for 2 weeks or greater.
Subtracting the background model from the data yields  the epidemic curve for 

the classification module.
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Background Subtraction Uses Model Fit For Anomaly Detection

For this case:

Day 0 = Start of attack

Day 5 = Detection

Anthrax incubation period =

3-4 days

Simulated Anthrax Attack + 
Background

Simulated Anthrax Attack

Estimated Anthrax Attack = 
Simulated Data – Background 
Model 

Background subtraction accurate 
for approximately 16 days, as 
required for Classification Module

1120 Index Cases
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Background Subtraction For Different Sized Attacks

680 Index Cases 2250 Index Cases
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Steps for Detection and Classification

 The components of the procedure are:

• Background Modeling/Outbreak Detection from time-series data

 Data contains the outbreak and background/endemic morbidity

• Extraction of the outbreak from the background

 Endemic component needs to be separated from the epidemic component

• Characterization of the outbreak

 estimation of index cases, time/rate of infection

• Identification of the outbreak

 What was the disease that caused it, given a few competing guesses
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Characterization of the Anthrax Epidemic

 Characterization: 

• Estimation of the number of index cases, time of release, an average dose, 
and some parameters of the visit-delay model

 Hypothesis: 

• An anthrax incubation period model + a visit delay model can reproduce 
the epidemic curve

 The quantities of interest are all parameters/inputs into this epidemic model

• So given a partial epidemic curve, fitting an anthrax model should reveal 
the necessary model parameters

 Questions:

• How much data is needed to estimate these parameters?

 i.e., is less than 15 days of (good, normal background extracted) data sufficient?

• What is the level of uncertainty in parameter estimates, as a function of 
(quantity of) data?
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Bayesian Techniques to Solve the Problem

 We formulate the estimation as a Bayesian inverse problem

• Predicated on the extracted epidemic data

 Allows one to use bounds / prior beliefs regarding the value of the 
parameters

• We assumed that index cases ranged between 100-10,000

 Solved using an adaptive Markov Chain Monte Carlo sampler

• All parameters estimated as probability density functions (PDF)

• Used autocorrelation analysis to determine “convergence” of the Markov 
chain
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Antrhax: Estimates of the Number of Index Cases

 Estimates of the number of index cases (in red). 

 True figure in blue. Left edge determines the day we first try to infer.

Number of index cases 
bounded in 7 days after 

attack; 

Bounded to 2250 people out 
of original population of 3 

Million;

Accurate to  20% after 9 days, 
post attack.

Incubation period is 3-4 days 
so will not get earlier than 

that.

•The alarm was on Day 6 (after attack)
•Data used starts on Day 4 (after 
attack)
•With 4 days of data (Day [4,5,6, 7] 
after attack) we have our first results
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Estimates of the Time of Infection

 4 days of data, post-alarm, correctly estimate time of infection

Red is the estimated release 
time / time of infection.

With 4 days of data, we’re 
within a day of the actual 

release!

•The alarm was on Day 6 (after attack)
•Data used starts on Day 4 (after 
attack)
•With 4 days of data (Day [4,5,6,7] 
after attack) we have our first results
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Application to a Communicable Disease

 The technique can be applied to a communicable disease

 Apart from the “usual” quantities, have to estimate infection rate

 Assumptions for communicable diseases model

• The infection rate increases and thereafter decreases smoothly in time

 Model using a skewed distribution like Weibull or Gamma

• Index cases are a small fraction of the total number of victims

 A lightweight model can be created and fit to data

• Uses MCMC, as before

• Estimates total size of the epidemic, visit delay parameters and infection 
rate parameters, all as PDFs
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A Communicable Disease 
Example

 Example:  A simulated plague epidemic

• Performed with an agent-based model 
for disease spread

• Includes visit-delay

• Incubation is NOT dose dependent

 100 index cases

• Epidemic dies out in 40 days

• 1500 victims, total

 Aim: 

• Estimate the total size of the epidemic

• Also, the infection rate curve

• Compare with the “true” figures from 
the simulation

Red points: People turning 
symptomatic, daily (observed)

Blue line: people being infected, 
daily (unobservable)

•The epidemic is driven by an 

unknown time-variant process 

(infection) and we have to infer 

it.

•Much harder!
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Estimation of the Final 
Epidemic Size

 The true figure is 1500

 The estimate improves 
(shorter error bars) with time 
(and data!)

 Estimates performed with 
data starting from 

• Day of alarm (A)

• 2 days before alarm (A-2)

 Easier for large outbreaks

The size of the epidemic can be inferred, but the inference is noisy 
(no nice trend with increasing data).

But the uncertainty does decrease with data.
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Estimation of the Parameter 
in Infection Rate Model

 Infection rate modeled as a 

(k, ) function

• -1 (rate parameter) estimated 

from data; k set to 2

 Results: PDFs of 

• About 15 days of data provide 

a good estimate of 

 But what does the infection 

rate look like over time?

• Next slide …. Estimates of -1 as a function of amount of 
data. Developed with data starting from 

day of detection as well as 2 days pre-
detection.
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Estimation of the Infection Rate (Over Time)

 Best estimate of the variation of infection rate over time

 Developed using -1
MAP (after 25 days of data)

• MAP = Maximum A Posteriori ~ best estimate

We actually manage to 
capture the hidden 

infection process, and 
its variation in time.

The blue dots are how 
the infection rate 

actually behaved; the 
smooth line is our 

inference.

And we capture its 
decay too!
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Steps for Detection and Classification

 The components of the procedure are:

• Background Modeling/Outbreak Detection from time-series data

 Data contains the outbreak and background/endemic morbidity

• Extraction of the outbreak from the background

 Endemic component needs to be separated from the epidemic component

• Characterization of the outbreak

 estimation of index cases, time/rate of infection

• Identification of the outbreak

 What was the disease that caused it, given a few competing guesses
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Identification of the Causative Agent

 Nobody told us the epidemic was an anthrax epidemic

• Could be plague or flu

 In characterization step, we saw that both communicable and non-
communicable diseases could be fit to data

 We will compete the anthrax,  plague and flu models

• The best fit model is probably the real cause of the disease

 Test

• Start with an anthrax attack

• Characterize using the 3 models

• Show what the final size of the epidemic looks like

• Compete the model

 More on this later – involves AIC and BIC
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Characterize with Plague and Flu (continued)

 Simulate an attack with anthrax 

• Atmospheric release of a population of 3,000,000

• 22,000 infected; dosage variable, depending upon population density 
distribution in space and wind direction

 Fit the three models to data (anthrax, flu and plague)

• Infer index cases, time of infection

• For communicable disease, also estimate time-dependent infection 
rate and final size of epidemic

 A word about flu

• Very interesting differences in civilian and military populations – but 
that is the subject of another talk!

• So we have a “civilian” and “military” flu models
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Characterize with Plague and Flu (continued)

• The plague and anthrax epidemic are both reasonable fits.

• Flu over-estimates the final size of epidemic (it spreads).

• And the epidemic size error bars shrink with data (more later…).

Inference performed with “civilian” 
flu; little difference with “military” 
flu model
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Compete the models!

 How?

• Compute AIC & BIC for all 3 
models and compare

• Large AIC & BIC mean bad fits

AIC BIC

• With 5 days of data anthrax is identified as the 

correct causative agent.

• Basically, anthrax model fits data best.

• Identification / model selection worked.
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AIC and BIC Capture Best Fit Model
 If the flu model has such a bad fit to data, how come the Ntot estimates have 

tight error bounds?

• While being so wrong in its estimates?

 Reason: The flu model gets “fit” to a local minimum

• Way worse than the global minimum, but flu parameters are not consistent with 
the global minimum 

 For example, the global minimum requires infection spread-rate to be zero

 With data, the local minimum steepens and narrows

• Error bars shrink

• But the maximum likelihood becomes worse and worse

• And model fitting becomes harder and harder

 But the AIC and BIC capture the worsening likelihoods, and so no harm done

Lesson: When fitting models to data, track the error bars and the maximum likelihood.

Adding more data could shrink error bars, but  worsen the model fit.
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Conclusions

 Techniques appear promising to construct and integrate automated 
detect-characterize-identify technique for epidemics

• Working off biosurveillance data

• Provides information on the particular/ongoing outbreak

 Parameter estimation capability ideal for providing the input 
parameters into an agent-based model

• Index Cases, Time of Infection, Total Epidemic Size

 Non-communicable diseases are easier than communicable ones

• Small anthrax can be bounded with 5 days of data, post-detection; plague 
and flu  takes longer

• Larger attacks can be bounded with ~3 days of data, post-detection
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Conclusions (Continued)
 Identification tests (model selection) with anthrax, plague and flu were 

successful

 Characterization techniques are highly useful even if sentinel physicians 
identify the disease

• Determines disease parameters

• Allows medical countermeasures planning

Classification provides answers to the situational awareness puzzle 

created by an outbreak.

Io ?

Plague? 
Anthrax?

?
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