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Estimating Disease Parameters Using Biosurveillance
Data

= Biosurveillance Data: Time series (counts/day) related to syndromic
data

* Our present work uses ICD-9 codes from hospitals as well as disease models
to simulate a epidemic or bioterrorist event within a population

= Goal of this Work: To develop statistical techniques to characterize
ongoing epidemics from initial/partial biosurveillance data

* Estimate disease parameters : index cases, time of infection, infection rate

* Do so early in the outbreak, with minimal data
* Quantify the confidence in the estimates of disease parameters
= Useful for bracketing outcomes in forward prediction
= Motivation:

* To provide initial conditions for disease models, to be used for planning
medical interventions, resource allocation etc.
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Biosurveillance Data is Complex

OTCD Sales (Respirat . .
rug Sales (Respiraon) * Biosurveillance data shows a broad

g - range of structures (spikes, weekly
cycles, seasonal trends, random
walk properties, missing data)

* “Normal” cycles and trends must be
discovered dynamically

Counts

Ch * Any outbreak will be superimposed
on this background, and must be
detected and subtracted from the
background for analysis

e Background must be accurately
°7 l | | | l l modeled to differentiate outbreak
1] 5 10 15 20 2% an .

counts from background counts in
the data

Time (Weeks)

Bloom, Buckeridge and Cheng, Jour. Am. Med. Informatics. Assoc. (2007) conclude: “7 day moving
average filter suppress exactly the short scale features that were the intended object of study”
More sophisticated methods are required.
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Steps Used in Our Analysis

= The components of the procedure are:
* Background Modeling/Outbreak Detection from time-series data

= Data contains the outbreak and background/endemic morbidity

e Extraction of the outbreak from the background

= Endemic component needs to be separated from the epidemic component

e Characterization of the outbreak

= Estimation of index cases, time/rate of infection

e |dentification of the outbreak

= What was the disease that caused it, given a few competing guesses
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Steps for Detection and Characterization

 Background Modeling/Outbreak Detection from time-series data

= Data contains the outbreak and background/endemic morbidity

e Extraction of the outbreak from the background

= Endemic component needs to be separated from the epidemic component

e Characterization of the outbreak

= estimation of index cases, time/rate of infection

e |dentification of the outbreak

= What was the disease that caused it, given a few competing guesses
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Modeling the Background

“Observation w/ noise” X, =u,+7,+¢, &, ~N(O, Gi)
“Random Walk” aut+1 — aut +vt +§t gt ~ N(O,G;)

”CYC“C Term” Viee = _(yt + Yia ... F yt_s) + @, O~ N(09 65))

= Background Model included a random walk term for long term trends, a zero
mean weekly cycle, and additive noise

= Modelis fit to data by MLE technigues using Kalman filter to calculate the
likelihood

= Kalman filter provides both 1-day ahead prediction and the prediction
uncertainty

This model provides the basis for both statistical anomaly detection
and background subtraction capabilities
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Test of Anomaly Detection Using Anthrax Outbreak Data

=  Background data is from Miami of daily counts of ILI-related codes:
e 487.0 Influenza with Pneumonia
e 487.1 Influenza with other respiratory manifestations
e 487.2 Influenza with other manifestations

= Total outbreak size is 500

* Anthrax outbreak is calculated using a realistic model with dose dependent
incubation time (“Wilkening A2” model)

* Time to seek care model is also included in the model

= Detection threshold set to 30

« Kalman filter determines one-step ahead prediction %,,, , as well as the error in this
prediction o,

 Detection occurs if standardized residual (x,,,—X,.,)/0,,,> 3
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Anthrax Data: Start Day =175

Anthrax, start day: 175 = Background: ILI ICD-9 codes
from Miami data
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Red Line: Calculated anthrax
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index cases

100
]
il —
|

Counts
G0 80
1 1
——
—
—
—_——
e

Can we detect an anomaly
in this noisy data, and how
=5 . . l early?

20 40
I I
e e
=

o 100 200 300

Day Mumber

APP!
@gﬁf : THU’mC. Copyright 2011 Applied Research Associates, Inc. All Rights Reserved.



expanding the realm of
POSSIBILITY®

Anthrax Data: Start Day= 175 (Detail)

Anthrax, start day: 175

100

* | ocal Level Model

Cots
G0 a0

40

20

= Details show prediction (red

dots) along with estimates in
prediction

= Blue line shows 30 detection

on day 5

160 165 170

Day Mumkber

Model provides a robust
method for detecting
counting anomalies in a
statistical framework
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Steps for Detection and Classification

= The components of the procedure are:
* Background Modeling/Outbreak Detection from time-series data

= Data contains the outbreak and background/endemic morbidity

e Extraction of the outbreak from the background

= Endemic component needs to be separated from the epidemic component

e Characterization of the outbreak

= estimation of index cases, time/rate of infection

e |dentification of the outbreak

= What was the disease that caused it, given a few competing guesses
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Forward Prediction of Background

= @Goal: subtraction of background

150
|

Forward Prediction

model from data, after ~_
. . . . Forward Data
detection, to isolate epidemic o \ NQ
5 Quadratic Fit to Model \i
= (Classification module = Output
* Only fits epidemic curve

Counts

Daily Count Data ﬁ
* Requires an accurate \‘ é

subtraction of background from N V\/\
data N\

= A the time of a detection,
background counts must be | | | |
accurately predicted into the 0 >0 100 &
future

Days

Longer-term predictions are typically valid for 2 weeks or greater.
Subtracting the background model from the data yields the epidemic curve for
the classification module.
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Background Subtraction Uses Model Fit For Anomaly Detection

Simulated Anthrax Attack +

Background \
300 = 1120 Index Cases

) N
Simulated Anthrax Attack Observed
——=—— Predicl/extracied
\ — | True outbreak
Estimated Anthrax Attack =

e {in p2althcare {acilijf€s)
~J
—
[}

Simulated Data — Background
Model \

For this case:

Day 0 = Start of attack

Day 5 = Detection

Anthrax incubation period =
3-4 days

Y
o
o

mptopiatic peopl
[

Number of 5y
n
L]

0 2 4 B 8 10 12 14 16 18 20 22
Day

Background subtraction accurate
for approximately 16 days, as
required for Classification Module
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Background Subtraction For Different Sized Attacks
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Steps for Detection and Classification

= The components of the procedure are:
* Background Modeling/Outbreak Detection from time-series data

= Data contains the outbreak and background/endemic morbidity

e Extraction of the outbreak from the background

= Endemic component needs to be separated from the epidemic component

e Characterization of the outbreak

= estimation of index cases, time/rate of infection

e |dentification of the outbreak

= What was the disease that caused it, given a few competing guesses
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Characterization of the Anthrax Epidemic

= Characterization:

* Estimation of the number of index cases, time of release, an average dose,
and some parameters of the visit-delay model

= Hypothesis:

* An anthrax incubation period model + a visit delay model can reproduce
the epidemic curve

= The quantities of interest are all parameters/inputs into this epidemic model

* So given a partial epidemic curve, fitting an anthrax model should reveal
the necessary model parameters

= Questions:

* How much data is needed to estimate these parameters?
= j.e., is less than 15 days of (good, normal background extracted) data sufficient?

 What is the level of uncertainty in parameter estimates, as a function of
(quantity of) data?
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Bayesian Techniques to Solve the Problem

We formulate the estimation as a Bayesian inverse problem
* Predicated on the extracted epidemic data

Allows one to use bounds / prior beliefs regarding the value of the
parameters

* We assumed that index cases ranged between 100-10,000
Solved using an adaptive Markov Chain Monte Carlo sampler
* All parameters estimated as probability density functions (PDF)

e Used autocorrelation analysis to determine “convergence” of the Markov
chain
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Antrhax: Estimates of the Number of Index Cases

2000

Number of index cases
*The alarm was on Day 6 (after attack) bounded in 7 days after
4000 *Data used starts on Day 4 (after ] attack;
attack)
n *With 4 days of data (Day [4,5,6, 7]
% after attack) we have our first results Bounded to 2250 people out
< 3000F ' of original population of 3
§ Million;
5 2000}
g Accurate to 20% after 9 days,
post attack.
1000 }
Incubation period is 3-4 days
0 , . so will not get earlier than
5 10 15 20 that.

Days since attack

= Estimates of the number of index cases (in red).
= True figure in blue. Left edge determines the day we first try to infer.
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Estimates of the Time of Infection

4
3}
ot
1}
@
E
— O L
c
O
g |
c *The alarm was on Day 6 (after attack)
- 2} *Data used starts on Day 4 (after
attack)
-3} *With 4 days of data (Day [4,5,6,7]
after attack) we have our first results
4}
-5 M 2
5 10 15 20
Days since attack

Red is the estimated release
time / time of infection.

With 4 days of data, we're
within a day of the actual
release!

= 4 days of data, post-alarm, correctly estimate time of infection
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Application to a Communicable Disease

= The technique can be applied to a communicable disease

|H

= Apart from the “usual” quantities, have to estimate infection rate

= Assumptions for communicable diseases model

* The infection rate increases and thereafter decreases smoothly in time
= Model using a skewed distribution like Weibull or Gamma

* Index cases are a small fraction of the total number of victims
= Alightweight model can be created and fit to data

* Uses MCMC, as before

* Estimates total size of the epidemic, visit delay parameters and infection
rate parameters, all as PDFs
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A Communicable Disease Red points: People turning
symptomatic, daily (observed)
Ex am p I e . Blue Iine:- people being infected,
| daily (unobservable)
= Example: A simulated plague epidemic mf_ —
* Performed with an agent-based model | _ I oo
for disease spread 8 |
* Includes visit-delay §605— AW .
* Incubation is NOT dose dependent = “F V.o ‘M
= 100 index cases g a\
e Epidemic dies out in 40 days - 51‘ e Di?, = '3'0'l‘"'\""‘:'::fc”
* 1500 victims, total
= Aim:

* The epidemic is driven by an
unknown time-variant process
(infection) and we have to infer

* Compare with the “true” figures from it.

the simulation e Much harder!

e Estimate the total size of the epidemic
* Also, the infection rate curve
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Estimation of the Final

RErCH
. ATOCIATES, INC.

Epidemic Size

The true figure is 1500

The estimate improves
(shorter error bars) with time
(and data!)

Estimates performed with
data starting from

* Day of alarm (A)

e 2 days before alarm (A-2)

Easier for large outbreaks

Final size of the epidemic

10000

8000

6000 |

4000}

2000}

——Plague (A)
—— Plague (A-2)

10 20
No. of days of data

The size of the epidemic can be inferred, but the inference is noisy
(no nice trend with increasing data).

But the uncertainty does decrease with data.

30
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. . 0.45 : .
Estimation of the Parameter —— Plague (A)
. . 0.4 —Plague (A-2)
in Infection Rate Model sl
7°
= |nfection rate modeled as a 2 03}
©
I'(k, 6°1) function S o oc|
o)
* 07 (rate parameter) estimated g 0.2}
from data; k set to 2 % 0.15
= Results: PDFs of 0! £ 01
e About 15 days of data provide 0.05}
a good estimate of 0! 0 . . . . .
. _ 0 5 10 15 20 25
= But what does the infection No. of days of data
rate look like over time?
* Next slide .... Estimates of 6 as a function of amount of
data. Developed with data starting from
day of detection as well as 2 days pre-
detection.
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Estimation of the Infection Rate (Over Time)

120 We actually manage to
[ capture the hidden
T o Davsotcats infection process, and
* Actual Behavior its variation in time.
The blue dots are how
the infection rate
actually behaved; the
smooth line is our

inference.

100F =

New infections (daily)
3 &
T L

N
=
LA L

20F

And we capture its
decay too!

= Best estimate of the variation of infection rate over time

= Developed using 0,,, (after 25 days of data)
e MAP = Maximum A Posteriori ~ best estimate
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Steps for Detection and Classification

= The components of the procedure are:
* Background Modeling/Outbreak Detection from time-series data

= Data contains the outbreak and background/endemic morbidity

e Extraction of the outbreak from the background

= Endemic component needs to be separated from the epidemic component

e Characterization of the outbreak

= estimation of index cases, time/rate of infection

e |dentification of the outbreak

= What was the disease that caused it, given a few competing guesses
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Identification of the Causative Agent

= Nobody told us the epidemic was an anthrax epidemic
* Could be plague or flu
" |n characterization step, we saw that both communicable and non-
communicable diseases could be fit to data
= We will compete the anthrax, plague and flu models
* The best fit model is probably the real cause of the disease

= Test
e Start with an anthrax attack
e Characterize using the 3 models
e Show what the final size of the epidemic looks like

e Compete the model
= More on this later — involves AIC and BIC
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Characterize with Plague and Flu (continued)

= Simulate an attack with anthrax
* Atmospheric release of a population of 3,000,000

e 22,000 infected; dosage variable, depending upon population density
distribution in space and wind direction

= Fit the three models to data (anthrax, flu and plague)

* |nfer index cases, time of infection

* For communicable disease, also estimate time-dependent infection
rate and final size of epidemic

= A word about flu

* Very interesting differences in civilian and military populations — but
that is the subject of another talk!

* So we have a “civilian” and “military” flu models
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Characterize with Plague and Flu (continued)

4 4 Epidemic size (w/ 25th & 75th percentiles)
65 x 10 v T T T T 10X 10 T L I I
—_ —— Anthrax (A)
| —— Plague (A) ol
st —— Anthrax {A-2) | '
= —— Plague (A-2) .
® Oor ' N
w 9F
O S
o 45} s
o o
< 4
O —_
8 as;
w 8t
w© 3}
=
" 25} . . . . . .
2 4 6 8 10 12 14
2r Number of days of data, post-alarm
15 A 2 " 2 2 Q W ~L~ KK »”
h P 3 10 12 12 Infer.ence Performed \'Nlth c.|Y|I|an
No. of days of data flu; little difference with “military”
flu model

* The plague and anthrax epidemic are both reasonable fits.
* Flu over-estimates the final size of epidemic (it spreads).
* And the epidemic size error bars shrink with data (more later...).
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Compete the models!

AIC variation with number of days of data

g0

iy

AlC value
(] I o [ap]
{mm] [ (] -
T T

r
=
T

10F

- —*—Flu (Civilian population)

—o— Anthrax
—%—Plague
—*— Flu (Military population)

<

o9
(-1 ]

1 | 1 1 1

4 b g 10 12
Mo. of days of data, post alarm
AIC
How?

e Compute AIC & BIC for all 3
models and compare

e Large AIC & BIC mean bad fits

BIC variation with number of days of data, post alarm

BD T T T T T
4 80 §
2ok —o— Anthrax i
) —e—Plague
gob — ¥ Flu {Military population) i
) —*— Flu (Civilian population)
Ssof 1
1 <
= 40t :
301 I
| 201 ]
| 100 1
D 1 1 1 1 1
14 z 4 b 8 10 12 14
[No. of days of data
BIC
» With 5 days of data anthrax is identified as the
correct causative agent.
* Basically, anthrax model fits data best.
* Identification / model selection worked.
28
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AIC and BIC Capture Best Fit Model

= If the flu model has such a bad fit to data, how come the N, estimates have
tight error bounds?

* While being so wrong in its estimates?

= Reason: The flu model gets “fit” to a local minimum
* Way worse than the global minimum, but flu parameters are not consistent with
the global minimum
= For example, the global minimum requires infection spread-rate to be zero
=  With data, the local minimum steepens and narrows
e Error bars shrink
e But the maximum likelihood becomes worse and worse
* And model fitting becomes harder and harder

But the AIC and BIC capture the worsening likelihoods, and so no harm done

Lesson: When fitting models to data, track the error bars and the maximum likelihood.
Adding more data could shrink error bars, but worsen the model fit.
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Conclusions

= Techniques appear promising to construct and integrate automated
detect-characterize-identify technique for epidemics

e Working off biosurveillance data

* Provides information on the particular/ongoing outbreak

= Parameter estimation capability ideal for providing the input
parameters into an agent-based model

* Index Cases, Time of Infection, Total Epidemic Size
= Non-communicable diseases are easier than communicable ones

* Small anthrax can be bounded with 5 days of data, post-detection; plague
and flu takes longer

e Larger attacks can be bounded with ~3 days of data, post-detection
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Conclusions (Continued)

= |dentification tests (model selection) with anthrax, plague and flu were
successful
= Characterization techniques are highly useful even if sentinel physicians
identify the disease
* Determines disease parameters
* Allows medical countermeasures planning

Anthrax?

Classification provides answers to the situational awareness puzzle
created by an outbreak.

31
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