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Outline

Spectroscopic analysis of K-shell radiators is employed to study z-
pinch stagnation, coupling various interesting physics

= Non-LTE plasma atomic physics
= QOpacity in radiation transport calculations
= Doppler effects on line shapes

= Gradients and 3D instability structure

Here, we study an Al wire array implosion using a multi-shell,
collisional-radiative analysis treatment to infer plasma properties

= Electron temperature and ion density
= Radial implosion velocity and isotropized velocity

= Gradients and opacity

The analysis characterizes the stagnating plasma and provides data
for comparison with 3D MHD numerical modeling

= >50 cm/us radial velocity from Doppler splitting

= ~19% of initial mass at T, > 1 keV in the core at start of stagnation
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Information about plasma conditions and structure are
encoded in the time-gated, radially-resolved spectra
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= Continuum and satellite emission on axis near time of peak x-ray power
= Line emission from large radius at all times -
= Doppler effects, e.g. splitting in Mg He-a at early times i) fatorat




Time-resolved elliptical crystal (TREX) spectrometers
measure gated radially-resolved K-shell spectra on Z

Resolution: Z-pinch
Time ~ 350 psec x-ray
Space ~ 220 um source
Spectral ~ 900

Slit array

Elliptically
bent crystal

A /’ I’
Multi-frame, /4////

time-resolved = Elliptically bent mica
microchannel crystal provides dispersion
plate detector = MCP gated detector
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= Slits provide 1D (radial)
spatial resolution for
multiple frames




i

—-‘FH

Analysis strategy: Match spectra and power using
collisional-radiative model over several plasma zones

Doppler shifts
across rays

Line emission
and absorption
In colder outer

Bl’lght shells
continuum
emission from core
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= Number of concentric shells chosen to
match spectral features in experiment
= Shell radii motivated by experimental data,
e.g. radius of line or continuum emission

= Collisional-radiative model applied to each
shell to constrain plasma conditions by
matching data
= Line ratios along specified line of sight (T,)

= Total K-shell power emitted from plasma,
continuum emission (n;)

= Doppler effect where available (v)
= |sotropized velocity (usp) also included in
calculated line widths
= Radiation transport carried out along
representative rays accounts for opacity

= Abel inversion was avoided due to concerns
with strong line opacity

= Doppler shifts/broadening accounted for in
transport modeling
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Radius in each zone is chosen based on observed

spectral features and motivated by data
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From early times, there is a core region on axis
producing >1 keV (continuum) emission

Al Ly-o. AlHe-a MgLy-a Mg He-a
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= Core size defined based on radius of core with m=1 structure i) paom
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Time-dependent collisional-radiative kinetic modeling matches
K-shell power and spectral features over a sequence of frames

K-shell x-ray power (TW)

= Here we focus on spectrometer frames early in the x-ray pulse
= K-shell x-ray power is measured (*30%) and modeled through

12 um Be filter on PCD detector
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Conditions in each shell adjusted to match spectral =
lineouts at various distances from the axis
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On- and off-axis spectra generated by radiation ===
transport calculations through the plasma zones
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Opacity in the halo is important in determining
Al He-a line shape and amplitude
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The plasma core on axis must be hot to explain line
profiles given Doppler effects
AlLy-a Al He-a Mg Ly-a Mg He-a.
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No Doppler splitting, Doppler splitting,
oval filled in on axis hollow oval line shape

= Clear Doppler-split oval in Mg He-a suggests there is no Mg He-a

emission from on axis

= Mg Ly-a emission is seen on axis (along with Al Ly-a and Al He-a)
= Therefore, there is plasma on axis and it is hot enough to have burned

through He-like Mg
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Temperature (keV) or Al ion density (1029 cm)
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A hot,

gep@@eore Is inferred at the foot of the x-ray =
pulse (beginning of stagnation)
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Only a small fraction of the mass is in the core

- 4V

at the start of stagnation (~1%)
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Radial distance (mm)

Doppler splitting in Mg He-a dopant line provides a
measure of emissivity-weighted velocity
Z1520, @40 on 20 mm nested Al 5056 wire array, 1.5 mg/cm, Mg He-a
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Large isotropized velocity is required in halo model ==
In order to attenuate Al He-a to the level seen in experiment

Line shapes are
dominated by Doppler

large instability in the
trailing mass, or is there
another explanation?

_______ Ugp (halo, Ry-R,)
Would be
reduced by halo
gradients
,(,T |
= -8.9 ns
&
L
: |
S
Usp (Rz'Rs)/

u, (halo, Ry-R)~

1520 A2A4 4 shells K13 /132

I
-8

TMime (ns)

Sandia
|1'| National
Laboratones




Doppler velocity inferred from Gorgon 3D MHD
simulations agrees reasonably with experiment
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Density (Kg / m®)

Velocity (cm/us)

Emission is from the leading edge of the dense
Imploding shell in Gorgon 3D MHD model
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High temperature in core is needed to explain ==
the observed K-shell line emission near peak power

i = Cold outer halo is still needed to
] absorb Al He-a and model the
] observed line shape
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Al and Mg resonance lines are reasonably explained™
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Continuum emission and satellites become quite ==

strong in the experiment
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Strong continuum emission between K lines likely due
to evolving structure in the core
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Summary

Intense K-shell x-ray source studies on Z provide an opportunity for
spectroscopic study of z-pinch plasma stagnation

Line ratios, shapes, and K-shell power together constrain the inferred
plasma conditions in a multi-shell model

Doppler splitting of K-shell emission lines, or Doppler shifted
absorption, provide a method to measure implosion velocity

= Reasonable agreement seen with velocities predicted through 3D MHD
Gorgon numerical modeling

= Doppler effects, opacity, and plasma gradients determine line shapes

A hot, dense core forms on axis early in the x-ray pulse, containing
initially only ~1% of the total array mass but emitting brightly

A cold, outer halo is required to attenuate Al He-a line emission,

= Puzzle: Large inferred isotropized velocity in this trailing material

Structure in the core may explain both line and continuum emission
seen in the experiment (future work)
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Opacity in the halo is important in determining
Al He-a line shape and amplitude
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Radiation on 6 interfaces along central LOS
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Doppler broadening due to residual bulk motion as well
as ion temperature contributes to line widths
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