
Test Driven Development
In .NET

Scott Griffin & Ramona Gallegos
Sandia National Laboratories

NLIT Summit 2011
June 17, 2011

SAND2011-3900C

Agenda

• What is TDD

• TDD is a design methodology, not a way of
getting developers to write unit tests

• Why you should use TDD on your project

• Examples in .NET

– Mocks

How do you develop?

• How do you write new
code?
– Develop

– Test

– Debug

• Would you be willing
to switch to:
– Test

– Develop

– Debug

Three Rules of TDD

• You are not allowed to write any
production code unless it is to make a
failing unit test pass.

• You are not allowed to write any
more of a unit test than is sufficient
to fail; and compilation failures are
failures.

• You are not allowed to write any
more production code than is
sufficient to pass the one failing unit
test.

• TDD?
• Is this a reasonable

representation of TDD?

TFD versus TDD

• Previous slide is actually only Test First Design.

• What’s the difference?

– Refactoring

Why is Refactoring important?

• You re-examine the design
every time a feature is added.
– Is my design correct for this

feature?

– If yes, write a test.

– If no, refactor.

• You design organically, with
the running code providing
feedback between decisions.

TDD isn’t about testing

• Testable code is more modular.

• Testable code is loosely coupled.

• Your designs must consist of highly cohesive,
loosely coupled components (e.g. your design
is highly normalized) to make testing easier
(this also makes evolution and maintenance of
your system easier too).

• TDD makes your code better.

But it takes more time!

• “If it's worth building, it's worth testing. If it's not
worth testing, why are you wasting your time
working on it?” – Scott W. Ambler

• “[W]hat would happen if you walked in a room
full of people [using TDD]. Pick any random
person at any random time. A minute ago, all
their code worked. Let me repeat that: A minute
ago all their code worked!” – Uncle Bob

• Our current project has over 2,000 unit tests.

• I am comfortable making any change. I know I
can prove the code is working again when I’m
done.

• I am fearless when changing other developer’s
code, because I know they wrote tests.

What’s the best documentation?

• When importing a new library, do you look at
documentation or examples?

• Unit tests are examples for future developers.

Code!!

References

• http://butunclebob.com/ArticleS.UncleBob.Th
eThreeRulesOfTdd

• http://www.agiledata.org/essays/tdd.html#W
hatIsTDD

http://www.agiledata.org/essays/tdd.html
http://www.agiledata.org/essays/tdd.html
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

Resources

• http://www.asp.net/

• http://stackoverflow.com/

• The Art of Unit Testing with Examples in .NET,
Roy Osherove

• Test-Driven Development by Example, Kent
Beck

• Rhino Mocks

• Fake It Easy

http://code.google.com/p/fakeiteasy/
http://ayende.com/wiki/Rhino+Mocks.ashx
http://stackoverflow.com/
http://stackoverflow.com/
http://stackoverflow.com/
http://www.asp.net/
http://www.asp.net/

Contact Information

Scott Griffin

Sandia National
Laboratories

PO Box 5800, MS-0931

Albuquerque, NM 87185-
0931

(505) 263-4948

scott.griffin@sandia.gov

@sgriffinusa

Ramona Gallegos

Sandia National
Laboratories

PO Box 5800, MS-0931

Albuquerque, NM 87185-
0931

(505) 284-8866

rkgalle@sandia.gov

@rkgallegos

http://twitter.com/sgriffinusa
http://twitter.com/sgriffinusa
http://twitter.com/sgriffinusa
http://twitter.com/sgriffinusa

