
Leveraging Formal Methods and
Confronting Complexity for

Digital System Reliability and Security

Sandia National Laboratories, Livermore, California

Sandia National Laboratories is a multiprogram laboratory operated by 
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the United States Department of Energy’s National 

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-4010C



About Sandia

• A Department of Energy national laboratory
– Primary mission is to develop, engineer, and test the non-

nuclear components of nuclear weapons

– R&D in arms control, nonproliferation, waste disposal

– Research in computer science and supercomputing, 
computational biology, mathematics, alternative energy

• Located in Albuquerque, NM and in Livermore, CA



Our digital systems

• Custom digital systems based on FPGA/ASIC

• Embedded systems for high reliability

• Command and control networks

• Software for simulation



Our current design flow



Behavioral simulation flow

HDL Behavioral 
Models

RTL Design 
Source

HDL 
Testbench

EDA Simulator



Gate level simulation flow

HDL Gate Level 
Models

P&R 
Netlist

HDL 
Testbench

EDA Simulator

Timing 
Netlist

RTL Design 
Source

FPAG/ASIC 
Design Tools



Our goal

•Exploring effective formal verification 
methodologies for customized digital systems

•Exploring applicable formal methods for complex 
systems related to cybersecurity



We view formal verification as one
facet of the digital complexity problem

• Includes issues in cybersecurity, reliability, and 
safety

• Complexity causes digital systems to have 
unknowable and, in general, unanalyzable 
faults/vulnerabilities

• Formal methods are currently relegated to 
simple systems or high levels of abstraction

– New approaches are improving on this



Formal methods can be applied at
various levels of abstraction



Our challenge

•Highly complex systems compared to most 
industrial applications

•General FV algorithms do not cover the entire 
space for our systems

•Specific properties related to extreme 
environments are hard to model and verify



Commercial formal verification tools

Company Equivalence Checker Model Checker Simulation Based 
Verification

Cadence Encounter 
Conformal 
Equivalence Checker

Incisive Formal 
Verifier

Incisive Enterprise 
Verifier

Jasper N/A JasperCore N/A

Mentor Graphics FormalPro Questa Formal Questa Core/Prime
(ModelSim)

Synopsys Formality Magellan VCS



Open source tools 

• Cadence SMV model checker

• Distributed Real-time Embedded Analysis Methods (DREAM)

• Java PathFinder (JPF)

• NuSMV

• Spin

• VIS



Securing an arbitrary code is not
just hard; it’s impossible

• Restated: Generic code has vulnerabilities that are 
unprovable and unknowable
– Not statistical, even in principle

– Turing completeness demands that a generic code is 
undecidable

• So now what?



Complexity makes
cyber threats asymmetric

• Developer, user, and attacker
all don’t know where the 
vulnerabilities are 
(undecidable) 

• Worse, attacker may have 
planted a vulnerability

• Asymmetry: One vulnerability 
compromises the whole code
– Developer has to find all of 

them (impossible in general) 

• No one can guarantee “this 
code is clean” or even 
quantify improvement



What is complexity?

• Complex systems are characterized by large 
numbers of interacting entities where even a few
entities can strongly affect system behavior

• Complex systems are irreducible; their behavior 
is emergent and not evident a priori, but is 
accessible via observation and simulation

• Examples are ubiquitous

– Living things and ecosystems

– Human societies, economies, and institutions

– Highly engineered artifacts – e.g., airplanes, NWs

– Large-scale infrastructure – e.g., power grids

– Computer software, hardware, and networks 



Complexity space illustrates tradeoffs
in device engineering and analysis

• Pink region is 
what cannot be 
built

• Rest of plot shows 
how analysis can 
be done



Formal methods are a bridge
to complexity, filling an important gap

• Formal methods use computer analysis to verify 
digital systems rigorously and exhaustively

– Applicable to less complex systems that are still beyond 
the reach of manual analysis

– Widely used in high-consequence industrial applications

• Verification of components does not generally 
translate to verification of whole system

• Irreducible complexity enters when exploring entire 
state space is infeasible

– Reliability and security assertions become probabilistic

• Both formal verification and complexity science are 
vital for gaining confidence in digital systems



Complexity science offers a new
perspective on modeling and design

• Most real-world systems are too intricate to 
analyze directly; they are irreducible

• Reductionism requires “bottom-up” understanding

– Use expert knowledge to model component entities

– Validate system model vs. observations

– Make each component entity as reliable as possible

– Formal methods are the pinnacle of this approach

• Complexity science provides “top-down” insight 
relating system structure to emergent behavior

– New modeling paradigm: Identify entities by abstraction 
from idealized models with known emergent behavior

– New design paradigm: Build real systems based on 
models with desired emergent behavior



• “Sandbot”: cyber model of 
coordinated malware

• ​SOC is spontaneous
development of multi-scale 
phenomena with power-law 
distributions

– Similar to thermodynamic 
criticality but without tuning

• Illustrated by sandpile 
model: physics-like cellular 
automaton

– Sand is sprinkled randomly

– Avalanches occur at all scales

Self-organized criticality is
a simple example of emergent behavior



Complexity is a fact of “life”

• Biological phenomena are a prototype and 
inspiration for many complex domains

– Life involves a large chemical regulatory network

– “Game of Life” model is based on population dynamics

– Bio concepts pervade computing (viruses, mutations)

• Biology typifies complex couplings of manmade 
systems – economy, energy, cybersecurity

Eukaryotic 
cell-cycle 
regulation



Robustness is key to understanding
real-world systems with “organic” behavior

• Highly optimized tolerance (HOT): Systems designed
or selected to perform well despite perturbations

• Robustness is necessary for biological evolution and 
for effective engineering

• HOT systems exhibit power-law distributions like SOC 
but have organic structure (not self-similar)

• Adapted robustness to one set of perturbations 
induces extra fragility to different perturbations

• Indeed, rare but catastrophic failures are seen in highly 
engineered/evolved systems

– Electrical blackouts, cyber shutdown of Estonia, financial 
panics, hacker penetration of bank database, etc.



Complexity can address 
“whole system” robustness and stability

• Consider designing a digital circuit to add two 1-bit 
numbers (a “half adder”)

– This is among the most basic functions appearing in 
microelectronics

• There are many ways of composing logic gates to 
implement this functionality

• The next slide shows two such circuits; each performs 
as a half adder when run for twenty steps

– Shown correctly adding 1 + 1 to get the binary result 10

– They also give correct answers for the other possible inputs



Outputs

Inputs Inputs

Outputs

A B



What distinguishes the two 
implementations? Resilience

• For this very simple functionality, both circuits can be 
verified by exhaustive testing

• More realistic circuits cannot be tested exhaustively, 
so we need to understand the effect of untested states

• In this example, we introduce occasional gate errors to 
represent unanticipated behavior

• The next slide shows a typical run of each circuit with 
a 1% error rate per gate update

– States that deviate from the ideal run are outlined in red

• Circuit A has much less error in the final output 
(greater resilience) than circuit B – why?

– In this case, average inputs per node (k) makes the difference



Outputs
(Average incorrect bits: 0.73)

Inputs Inputs

Outputs
(Average incorrect bits: 0.10)

A B

k = 1.5 k = 2.5



PLL diagram (Little et al, 2004)

Analog mixed signal control systems

Hybrid systems: Dynamical systems that exhibit both discrete and 
continuous change

– Their discrete variables are updated in discrete steps that 
consume no time (resulting in jumps)

– Their continuous real-valued variables (clocks and drifting 
clocks) are updated as continuous functions while time elapses 
(during delays, resulting in so-called “flows”)



Today formal verification is
limited to the digital domain

• A computer model is generated for the digital logic

– Very accurate as long as:

• The circuit behaves digitally

• Inputs remain in their expected range

• Not considered in formal verification:

– Digital circuit ceases to behave digitally because of extreme 
environments

– Out-of-nominal digitized analog inputs appear from the 
external environment

• We seek to broaden current techniques to verify 
function for digital systems in extreme environments



• Complex system 
simulation 
leverages HPC but 
confronts issues 
of tractability and 
V&V that current 
research is 
addressing

• HPC, formal 
methods, and 
complexity theory 
can work together 
to expand our 
capabilities

Digital system analysis research will 
increase utility of HPC in simulation



Composition of formally verified systems

…

…

✔

✔

✔

Decomposing a complex digital design may enable 
component-level formal verification using HPC

Composition to the whole device is nontrivial, but 
the formal results can usefully constrain behavior


