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ABSTRACT 
 

The Sandia Array Performance Model (SAPM) [1] 
describes the power performance of photovoltaic (PV) 
modules under variable irradiance and temperature 
conditions.  Model parameters are estimated by 
regressions involving measured module voltage and 
current, module and air temperature, and solar irradiance.  
Measurements are made under test conditions chosen to 
isolate subsets of parameters and which improve the 
quality of the regression estimates.  Uncertainty in model 
parameters results from uncertainty in each measurement 
as well as from the number of measurements.  Uncertainty 
in model parameters can be propagated through the 
model to determine its effect on model output.  In this 
paper we summarize the process for estimating 
uncertainty in model parameters for flat-plate, crystalline 
silicon (cSi) modules from measurements, present 
example results, and illustrate the effect of parameter 
uncertainty on model output.  Finally, we comment on how 
analysis of parameter uncertainty can inform model 
developers about the presence and impacts of model 
uncertainty. 
 

INTRODUCTION 
 
The Sandia Array Performance Model [1] relates module 
voltage and current at five points on the IV curve to 
effective irradiance and cell temperature.  Model 
parameters are estimated by regression of measurements 
of current and voltage to measured irradiance and 
temperature and are available for a large number of PV 
modules.   
 
Uncertainty in model output may result from: (1) 
uncertainty in model parameters, termed parameter 
uncertainty; (2) variability in irradiance and temperature, 
(3) variability among modules of the same manufacturer; 
and (4) misspecification of the model itself, referred to as 
model uncertainty.  Uncertainty analysis of model output 
involves characterizing uncertainty and variability in model 
inputs and propagating uncertainties through the model.  
Uncertainty analysis is complemented by sensitivity 
analysis which identifies the contribution to output 
uncertainty of each uncertain input.  Quantifying 
uncertainty in model output is currently of interest because 
such uncertainty informs decisions about investment risk 
for large-scale PV power plants. 
 
When a single module is available for testing, parameter 
error is quantified by the estimation error in each 

parameter.  This estimation error results from 
measurement error and from the necessarily limited 
number of measurements.  In this analysis, we consider 
only the contribution to parameter uncertainty resulting 
from the number of measurements, and defer 
consideration of measurement error to later investigation.  
Moreover, we consider tests of a single module taken as a 
representative of a production batch of modules.  These 
limitations significantly understate the range of uncertainty 
in each parameter, compared to that which would result if 
measurement error were propagated and several modules 
were tested.  However, we are able, from a single module 
test, to examine correlations between parameter estimates 
and to perform uncertainty and sensitivity analysis to 
identify which parameters influence uncertainty in the 
performance model output. 
 
Methods for determining uncertainty in the SAPM model 
parameters have recently been codified [2].  These 
methods are summarized here and are illustrated by 
estimation of model parameters for a 230W module 
characterized at Sandia.  Uncertainty and sensitivity 
analyses are reported for this module.  Finally, we 
examine the results of these analyses to determine if 
model uncertainty is present to any significant degree. 
 

PARAMETER ESTIMATION 
 
For flat-plate cSi modules, the fundamental equations in 
the SAPM are: 
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where: 

OCV  is open-circuit voltage (V); 

MPV  is voltage (V) at maximum power; 

SCI  is short-circuit current (A); 

MPI  is current (A) at maximum power; 
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CT  is cell temperature (K); 

eE  is effective irradiance (suns); 

SN  is the number of cells in series; 

( ) C
C

nkTT
q

δ =  is the thermal voltage; 

n  is the empirical diode factor; 
/k q  is the ratio of Boltzmann’s constant to the 

elementary charge. 
The remaining terms (e.g., OCβ ) involve parameters that 

are to be estimated. The subscript  indicates a 
constant evaluated at reference irradiance of 1000 W/m2 
(i.e., 1 sun) and reference cell temperature  (typically 

25°C).  The empirical function 

0~

)a

0T
(1f AM  of absolute air 

mass a  corrects SC  to account for atmospheric 
attenuation of the solar spectrum.   

AM I

 
PARAMETER ESTIMATION 

 
Parameters are estimated in three stages, with values 
estimated at earlier stages being used in the estimation of 
parameters at later stages. 
 
Temperature coefficients 
 
Module testing begins with a thermal performance test 
designed to support estimation of the parameters OCβ , 

MPβ , SCα  and MPα .  Measurements are made at 

midday when e  and during clear-sky, low wind 
conditions.  The module is first cooled by being covered, 
then exposed to sunlight; IV curves are recorded while the 
module returns to equilibrium temperature.  Cell 
temperature is estimated from thermocouple 
measurements at the module backplane; irradiance is 
measured by a reference cell.  Measured voltage and 
current are adjusted to one-sun conditions by assuming 
module response to irradiance similar to that of the 
reference cell, and a

1≈

1

E

( )f AM

1e ≈

 is assumed to equal 1.  

These assumptions are justified because test conditions 
are chosen so that  and E 1.5aAM ≈  (and 

1  by design).  With these adjustments and 

assumpt nd an assumed generic value for the diode 
factor , Eq. (1) through Eq. (4) reduce to linear 

equations in cell temperature . 
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Significant correlations are present between voltage and 
current measurements as illustrated in Figure 1.  Because 
measurements are simultaneous and are paired with 

measured irradiance and temperature, correlations 
between measured voltage and current induce 
correlations between parameters estimated by regression.  
Consequently, values of OCβ , MPβ , SCα  and MPα  are 
estimated by multivariate linear regression on 
temperature.  Figure 2 illustrates correlations between 
estimated parameter values resulting from correlations in 
the dependent regression variables.  The scatterplots in 
Figure 2 were created by randomly sampling from the 
multivariate normal distribution ( ),N μ Σ  where μ  is the 

vector of ordinary least squares estimates of OCβ , MPβ , 

SCα  and MPα , and Σ  is the covariance matrix 
associated with the parameter estimates. 
 

 
Figure 1. Correlations between VMP, VOC, ISC and IMP 
adjusted to one-sun conditions for a 230W module. 
 

 
Figure 2.  Values for OCβ , MPβ , SCα  and MPα  
sampled from distribution of estimation error for a 
230W module. 
 
 

26 28 30 32
34

36

38

40

VMP

VOC

26 28 30 32
7.6

7.65

7.7

VMP

IMP

26 28 30 32

8.1

8.2

8.3

VMP

ISC

7.6 7.65 7.7

8.1

8.2

8.3

IMP

ISC

-0.14 -0.137 -0.134

-0.131

-0.129

-0.127

βMP

βOC

-0.14 -0.137 -0.134

1.4

1.8

2.2
x 10

-4

βMP

αMP

-0.14 -0.137 -0.134
7

7.4

7.8
x 10

-4

βMP

αSC

1.4 1.8 2.2

x 10
-4

7

7.4

7.8
x 10

-4

αMP

αSC



Intercepts and spectral correction function 
 
Values for the intercepts 0SCI , 0OCV , 0MPV ,. and 0MPI  
are estimated from measurements obtained at midday 
during clear sky conditions  whic  
temperature is relatively stable, 1eE ≈  and 2aAM

during h module
< . 

Values for these parameters could be obtained 
simultaneous with the regression onto thermal test data; 
however, current pract is to first estimate the 
temperature coefficients OC

ice 
β , MPβ , SCα  and MPα  and 

to use these values to correct measured voltage and 
current to reference temperature conditions before 
obtaining pt values.  The spectral correction 
function ( )1 a

 the interce
f AM  is characterized by a 4th degree 

polynomial; coefficients are estimated from measurements 
uring clear-sky conditions.   

 of test conditions, 

d
 
The value for 0SCI  is obtained first.  Measured values of 
voltage and current are adjusted to one-sun conditions by 
assuming module response similar to that of the reference 
cell.  By choice 2.0a , and over 

this range of a

AM <

AM , ( )1 af AM

(
 
is approximated by a 

linear expression: )1 0 1 af AM b b AM≈ +

n aAM : 

. Eq. 3 is 

arrangere d to a linear expression i
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Regres alues for the products
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ients for the full 4th degree polynomial for 

( )1 af AM  are obtai  by regression using Eq. 3 and 

correcting mea

ned

sured  to a reference cell temperature 
f 50°C: 

)
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 term
 
The  *

0SCI  in Eq. 7 is determined in a similar manner 

q. 5) by evaluating a r eqas linea uation at 

 obtained by regressing  to 

thre
short-circuit 

urrent to improve the estimated values: 
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 (E
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Finally, the value for 0SCI  is used to obtain the other 

e intercepts.  The effective irradiance on the module, 

eE , is adjusted by using the measured 
c
 

( )( )0 0

ˆ
1

SC
e

SC SC C

IE
I T Tα

=
+ −

 (8) 

 

The adjusted values ˆ
eE  remove the discrepancy between 

the spectral response of the reference cell and the 
module.  Eq. 1, 2, and 4 are then used to obtain the 
corresponding intercepts from the constant terms in 

ons with eregressi Ê .  Test conditions are chosen so that 

ˆ 1eE ≈  to minimize the influence of the irradiance terms 
 Eq. 1, 2, and 4. 

between 
stimated parameter values (illustrated in Fig. 3). 

 

in
 
As was the case with the temperature coefficients, 
correlations between measured current, voltage and 
environmental quantities result in correlations 
e

 
Figure 3.  Values for 0OCV , 0MPV , 0SCI  and 0MPI  
sampled from distribution of estimation error for a 

o
ribi

ctor 
etermined by a regression using Eq. 1: 

 

230W module. 
 
Diode factor and irradiance-related coefficients 
 
The final set f parameters to be estimated include the 
diode factor n  and the coefficients desc ng the effects 

of irradiance on voltage and current, i.e., 0C  through 3C .  
Test conditions are chosen to ensure a wide range of 
irradiance conditions are observed.  Diode fa n  is first 
d
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The constant  in Eq. 9 is discarded.  With a value for n  
in hand, Eq. 2, 3 and 4 are expressed as polynomials in 

 or 

0b

ˆ
e( )ˆln eE E  and the corresponding coefficients are 

determined, using the additional condition that 
  Figure 4 illustrates values for these 

parameters obtained by sampling from the multivariate 
normal distribution describing error in the parameter 
estimates. 

0 1C C+ 1=

 

 
Figure 4.  Values for , ,  and  sampled 
from distribution of estimation error for a 230W 
module. 
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UNCERTAINTY AND SENSITIVITY ANALYSIS 

 
Uncertainty in model output is quantified by propagating 
uncertainty in model parameters through the array 
performance model.  A random sample  of parameter 
values is drawn consistent with correlations between 
parameter values as illustrated in Fig. 2, 3 and 4; for each 
element  of this sample (where  is a vector of 

parameter values), model output  is calculated.  To 
isolate the effects of parameter uncertainty on model 
output, model inputs characterizing the solar resource 
(i.e., ) and environmental effects (i.e., 

X

iix x

iy

eE AM  and ) 
are fixed using the typical meteorological year (TMY2) 
data for Albuquerque, NM. 

CT

 
Figure 5 illustrates the range of values for total energy 
obtained from the sample .  Uncertainty in annual 
energy resulting from parameter uncertainty is less than 
1%.  The small effect on the magnitude of annual energy 
results because of the relatively small estimation error in 

each parameter, which in turn results from testing only one 
module and by excluding consideration of measurement 
error. These findings are consistent with previous 
analyses of uncertainty in predictions of total energy 
(e.g., [3]). 

X

 
It is certain that the effects on annual energy of variability 
in meteorological quantities, specifically irradiance, will 
dwarf the effects of parameter uncertainty.  We opine that, 
if several modules were tested, uncertainty ranges for 
parameters would increase by a factor of 2 or more, and 
that consideration of measurement uncertainty would 
increase parameter uncertainty to a lesser extent.  
However, we do not believe that the effects of greater 
parameter uncertainty, resulting from tests of multiple 
modules and consideration of measurement error, would 
approach that of variability in irradiance. 
 

 
Figure 5.  Histogram of annual energy obtained using 
TMY2 data for Albuquerque, NM, and sampled values 
for performance model coefficients. 
 
The mapping between  and  forms the basis for 
sensitivity analysis to determine the relative contribution of 
each uncertain input to uncertainty in model output.  
Identifying model sensitivities informs efforts to improve 
models and to reduce uncertainties through improvements 
to module characterization.  We performed stepwise 
ranked regression, which adds variables sequentially to a 
regression model; at each step, the method adds the 
variable that explains the greatest fraction of remaining 
variance.  Ranked regression transforms monotonic 
relationships to linear relationships, removing the effects 
of disparate parameter scales on the sensitivity analysis 
results.  Before conducting the regression, we examined 
the sample 

ix iy

X  to remove elements from consideration 
where significant correlations (i.e., correlation coefficient 
exceeding 0.97) were present.  Stepwise regressions are 
unreliable when highly correlated predictors are included.  
The final regression included: temperature coefficients, 

MPβ , SCα  and MPα ; intercepts , 0SCI 0MPV  and 
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; diode factor ; irradiance coefficients ,  and ; 

and the cubic coefficient of 

n 0C

a

2C
)

3C
(1f AM , denoted .  

Parameters 

3a

OCβ  and  exhibited strong correlations 

with 

0OCV

MPβ  and 0MP

0 1C C+
V , respectively; coefficient  is 

redundant because .  The coefficients of 

1C

11= f  
were found to be highly correlated; the cubic term was 
selected as representative because it showed a strong 
negative correlation with the values of ( )a1f AM  for 

2AM < , implying an overall inverse relationship with 
total energy. 
 
Table 1 illustrates the results of the stepwise ranked 
regression for total energy.  The temperature coefficient 
for voltage maximum power, MPβ , explains roughly half 
of the uncertainty in total energy; the positive value for the 
SRRC indicates that as MPβ  increases, total energy also 
increases.  The counter-intuitive increase in energy with 
increasing MPβ  occurs because MPβ  is negative; 

increases in MPβ  result in less reduction of energy as 

temperature increases.  The representative coefficient  

from the function 1 a

3a
( )f AM  appears next, indicating a 

substantial contribution to uncertainty in total energy from 
uncertainty in the correction for atmospheric spectral 
effects, which is present through the conversion of 
measured short-circuit current to effective irradiance 
(Eq. 8).  Roughly half of the remaining uncertainty in total 
energy results from uncertainty in the temperature 
coefficient for current at maximum power MPα  and from 
the intercept term for current at maximum power at 
reference conditions, 0MP , and the balance of 
uncertainty in total energy arising from the uncertainty in 
ther coefficients. 

I

o
 
Table 1.  Stepwise ranked regres n for total energ . sio

R
y

Step Variable 
2 a SRRC b 

1 MPβ  0.42 0.64 

2 3a  0.77 -0.57 

3 MPα  0.86 0.17 

4 0MPI  0.88 0.13 
a: Cumulative R2 with entry of each variable into model 
: Standardized rank regression coefficient in final model b

 
 

MODEL UNCERTAINTY  
 

Model uncertainty is present when model results differ 
systematically from measurements.  Model uncertainty 
results from the absence of important parameters from the 
model, or from missing or incorrect combinations of 
parameters in the model’s equations.  Although the 
formulation of a model determines which parameters are 
present, model uncertainty is distinct from parameter 
uncertainty.  Parameter uncertainty involves the values 
assigned to parameters rather than the use of those 
parameters in the model’s equations. 
 
We investigated whether model uncertainty is present by 
examining two parameter estimates to which the model 
results are sensitive, and the agreement between model 
results and measurements.  Figure 6 illustrates the data 
supporting the estimation of MPβ  and the regression 
used to determine its value.  Correction to one sun nearly 
linearizes the measurements, resulting in a relatively small 
estimation error in MPβ  which is the slope of the line fit to 
the data.  Consequently, sampled slope values differ little 
and in general all provide a reasonable fit to the underlying 
data.  We conclude that there is little evidence of model 
uncertainty in the representation of MPβ . 

 
Figure 6.  Estimation of MPβ  from measured MPV  
scaled to one sun. 
 
Figure 7 illustrates the fit between measured data and the 
polynomial ( )1 af AM  (percentiles determined by 

sampled values for the coefficient ).  Measurements 
are taken across three days as indicated by the colors in 
Fig. 7.  Parameters (or fitted equations) determined by 
regression often cannot represent the range of variation 
present in the underlying data, due to the smoothing 
inherent in regression.  Such is the case with the 
estimation of 

3a

( )1 af AM  where the equation fit to the 

aggregate of all three days does not represent the 
variability apparent across the days.  We conclude that 
model uncertainty is present in the correction for 
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CONCLUSIONS 

the presence and effects of model 
ncertainty. 

ly 
 differences between estimated and measured power. 

 effects of 
easurement uncertainty to further analyses. 
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We quantified uncertainty in the parameters for the Sandia 
Array Performance Model considering only estimation 
error resulting from regressions.  We found significant 
correlations between parameter values due to correlations 
in the underlying measurements of voltage, current, 
irradiance and temperature.  We propagated the 
uncertainty in parameters through the model to quantity 
the resulting uncertainty in total power.  We also identified, 
using sensitivity analysis, the parameters making the 
largest contributions to uncertainty in total power, and 
investigated 

 
Figure 7.  Estimation of (1 a )f AM  from measured 

, scaled to one sun and normalized to 50°C. SCI
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We found that error in parameter estimation does not lead 
to a significant amount of error in total energy projected by 
the model.  We observe that several components of the 
model do not reproduce the full variability in the underlying 
measurements due to the smoothing inherent when 
estimating parameters by regression.  However, we did 
not find that the model uncertainty contributes significant
to
 
We note that this work is based on testing of a single cSi 
module, and thus, the uncertainty in total power does not 
consider variability between modules of the same 
production lot, nor the effects of measurements error.  We 
opine that, if quantified and propagated, variability 
between similar modules would lead to significantly 
greater uncertainty in total power, by roughly a factor of 2 
or more.  We defer quantification of the

 
Figure 8 compares model predictions of power (at the 
maximum power point) to observations.  Comparison is 
shown as a function of voltage at maximum power MPV ; 

variation in MPV  reflects a wide range of atmospheric 
conditions experienced during the tests.  The systematic 
agreement between measured and modeled results 
indicates that, overall, the model successfully reproduces 
the measured quantities, despite the presence of model 
uncertainty in several components of the model. 
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Figure 8.  Comparison of measured and modeled 
maximum power MPP . 
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