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ABSTRACT

The Sandia Array Performance Model (SAPM) [1]
describes the power performance of photovoltaic (PV)
modules under variable irradiance and temperature
conditions. Model parameters are estimated by
regressions involving measured module voltage and
current, module and air temperature, and solar irradiance.
Measurements are made under test conditions chosen to
isolate subsets of parameters and which improve the
quality of the regression estimates. Uncertainty in model
parameters results from uncertainty in each measurement
as well as from the number of measurements. Uncertainty
in model parameters can be propagated through the
model to determine its effect on model output. In this
paper we summarize the process for estimating
uncertainty in model parameters for flat-plate, crystalline
silicon (cSi) modules from measurements, present
example results, and illustrate the effect of parameter
uncertainty on model output. Finally, we comment on how
analysis of parameter uncertainty can inform model
developers about the presence and impacts of model
uncertainty.

INTRODUCTION

The Sandia Array Performance Model [1] relates module
voltage and current at five points on the IV curve to
effective irradiance and cell temperature. Model
parameters are estimated by regression of measurements
of current and voltage to measured irradiance and
temperature and are available for a large number of PV
modules.

Uncertainty in model output may result from: (1)
uncertainty in model parameters, termed parameter
uncertainty; (2) variability in irradiance and temperature,
(3) variability among modules of the same manufacturer;
and (4) misspecification of the model itself, referred to as
model uncertainty. Uncertainty analysis of model output
involves characterizing uncertainty and variability in model
inputs and propagating uncertainties through the model.
Uncertainty analysis is complemented by sensitivity
analysis which identifies the contribution to output
uncertainty of each uncertain input. Quantifying
uncertainty in model output is currently of interest because
such uncertainty informs decisions about investment risk
for large-scale PV power plants.

When a single module is available for testing, parameter
error is quantified by the estimation error in each

parameter. This estimation error results from
measurement error and from the necessarily limited
number of measurements. In this analysis, we consider
only the contribution to parameter uncertainty resulting
from the number of measurements, and defer
consideration of measurement error to later investigation.
Moreover, we consider tests of a single module taken as a
representative of a production batch of modules. These
limitations significantly understate the range of uncertainty
in each parameter, compared to that which would result if
measurement error were propagated and several modules
were tested. However, we are able, from a single module
test, to examine correlations between parameter estimates
and to perform uncertainty and sensitivity analysis to
identify which parameters influence uncertainty in the
performance model output.

Methods for determining uncertainty in the SAPM model
parameters have recently been codified [2]. These
methods are summarized here and are illustrated by
estimation of model parameters for a 230W module
characterized at Sandia. Uncertainty and sensitivity
analyses are reported for this module. Finally, we
examine the results of these analyses to determine if
model uncertainty is present to any significant degree.

PARAMETER ESTIMATION

For flat-plate cSi modules, the fundamental equations in
the SAPM are:
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where:
Voc is open-circuit voltage (V);

VMP is voltage (V) at maximum power;
I is short-circuit current (A);

|MP is current (A) at maximum power;



T¢ is cell temperature (K);

Ee is effective irradiance (suns);

Ns is the number of cells in series;

5(Tc ) = kT is the thermal voltage;
q

n is the empirical diode factor;
k /g is the ratio of Boltzmann's constant to the
elementary charge.

The remaining terms (e.g., :Boc) involve parameters that

are to be estimated. The subscript ~, indicates a

constant evaluated at reference irradiance of 1000 W/m?
(i.e., 1 sun) and reference cell temperature T0 (typically

25°C). The empirical function fl(AM a) of absolute air

mass AM, corrects |y to account for atmospheric
attenuation of the solar spectrum.

PARAMETER ESTIMATION
Parameters are estimated in three stages, with values
estimated at earlier stages being used in the estimation of
parameters at later stages.

Temperature coefficients

Module testing begins with a thermal performance test
designed to support estimation of the parameters ﬁoc'

Pup . Qsc and Qyp .

midday when E, =1 and during clear-sky, low wind

Measurements are made at

conditions. The module is first cooled by being covered,
then exposed to sunlight; IV curves are recorded while the
module returns to equilibrium temperature. Cell
temperature is estimated from thermocouple
measurements at the module backplane; irradiance is
measured by a reference cell. Measured voltage and
current are adjusted to one-sun conditions by assuming
module response to irradiance similar to that of the

reference cell, and fl(Al\/Ia) is assumed to equal 1.
These assumptions are justified because test conditions
are chosen so that E,~1 and AM, ~1.5 (and

f, (1.5)21 by design). With these adjustments and

assumptions and an assumed generic value for the diode
factor n, Eq. (1) through Eq. (4) reduce to linear

equations in cell temperature TC .

Significant correlations are present between voltage and
current measurements as illustrated in Figure 1. Because
measurements are simultaneous and are paired with

measured irradiance and temperature, correlations
between measured voltage and current induce
correlations between parameters estimated by regression.

Consequently, values of By, Byp . Osc and ayp are

estimated by multivariate linear regression on
temperature. Figure 2 illustrates correlations between
estimated parameter values resulting from correlations in
the dependent regression variables. The scatterplots in
Figure 2 were created by randomly sampling from the

multivariate normal distribution N (,u,Z) where (1 is the
vector of ordinary least squares estimates of Soc, Syp »

Qs and e, and X is the covariance matrix
associated with the parameter estimates.
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Figure 1. Correlations between Vwp, Voc, Isc and lyp
adjusted to one-sun conditions for a 230W module.
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Figure 2. Values for fBoc, By, O and Oyp

sampled from distribution of estimation error for a
230W module.



Intercepts and spectral correction function

Values for the intercepts lco, Voco: Vipo - @and lypg

are estimated from measurements obtained at midday
during clear sky conditions during which module

temperature is relatively stable, E, 1 and AM, <2.

Values for these parameters could be obtained
simultaneous with the regression onto thermal test data;
however, current practice is to first estimate the

temperature coefficients foc, Byp» sc and &yp and

to use these values to correct measured voltage and
current to reference temperature conditions before
obtaining the intercept values. The spectral correction

function fl(AMa) is characterized by a 4" degree

polynomial; coefficients are estimated from measurements
during clear-sky conditions.

The value for Isco is obtained first. Measured values of

voltage and current are adjusted to one-sun conditions by
assuming module response similar to that of the reference

cell. By choice of test conditions, AM , < 2.0, and over
this range of AM_, fl(AI\/Ia) is approximated by a
linear expression: fl(Al\/l ) ~b,+b,AM,. Eq. 3 is

rearranged to a linear expressionin AM,:

I%"'“sc (Tc _To): Isco(bo+b1AMa) (5)

Regression obtains values for the products Iscobo and
lsco by ; by design, 1= f; (1.5) ~b, +b1.5, and this
expression is used to obtain the value of |SCO .

The coefficients for the full 4™ degree polynomial for
fl(Al\/Ia) are obtained by regression using Eg. 3 and

correcting measured |SC to a reference cell temperature
of 50°C:

lsc 50 = Isc/(l"'asc (Tc _50)) (6)
f,(AM, ) = lgc 5/ E,l5co = Rel. Norm. Isc (7)

The term I;co in Eq. 7 is determined in a similar manner
as Isco (Eq. 5) by evaluating a linear equation at

AM, =1.5 obtained by regressing l¢; 5, to AM .

Finally, the value for Isco is used to obtain the other
three intercepts. The effective irradiance on the module,

E,.

current to improve the estimated values:

= ISC
&= /|SCO (1+ag (Te -T,)) ®)

The adjusted values Ee remove the discrepancy between

is adjusted by using the measured short-circuit

the spectral response of the reference cell and the
module. Eq. 1, 2, and 4 are then used to obtain the
corresponding intercepts from the constant terms in

regressions with Ee . Test conditions are chosen so that

Ee ~1 to minimize the influence of the irradiance terms
in Eq. 1, 2, and 4.

As was the case with the temperature -coefficients,
correlations between measured current, voltage and
environmental quantities result in correlations between
estimated parameter values (illustrated in Fig. 3).
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Figure 3. Values for Voo, Vypo: lsco and lypo

sampled from distribution of estimation error for a
230W module.

Diode factor and irradiance-related coefficients

The final set of parameters to be estimated include the
diode factor N and the coefficients describing the effects

of irradiance on voltage and current, i.e., C; through C;.

Test conditions are chosen to ensure a wide range of
irradiance conditions are observed. Diode factor N is first
determined by a regression using Eq. 1:



~ \ KT,
Voc _ﬂoc (Tc _To):b0+Ns In(Ee)YCn (9)

The constant b0 in Eq. 9 is discarded. With a value for N
in hand, Eq. 2, 3 and 4 are expressed as polynomials in

|I’1(Ee) or Ee and the corresponding coefficients are

determined, additional condition that

C,+C =1
parameters obtained by sampling from the multivariate

normal distribution describing error in the parameter
estimates.

using the
Figure 4 illustrates values for these
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Figure 4. Values for N, CO, C2 and C3 sampled

from distribution of estimation error for a 230W
module.

UNCERTAINTY AND SENSITIVITY ANALYSIS

Uncertainty in model output is quantified by propagating
uncertainty in model parameters through the array

performance model. A random sample X of parameter
values is drawn consistent with correlations between
parameter values as illustrated in Fig. 2, 3 and 4; for each

element X; of this sample (where X; is a vector of

parameter values), model output Y, is calculated. To

isolate the effects of parameter uncertainty on model
output, model inputs characterizing the solar resource

(.e., E,)and environmental effects (i.e., AM and T)

are fixed using the typical meteorological year (TMY2)
data for Albuquerque, NM.

Figure 5 illustrates the range of values for total energy

obtained from the sample X . Uncertainty in annual
energy resulting from parameter uncertainty is less than
1%. The small effect on the magnitude of annual energy
results because of the relatively small estimation error in

each parameter, which in turn results from testing only one
module and by excluding consideration of measurement
error. These findings are consistent with previous
analyses of uncertainty in predictions of total energy

(e.g., [3)).

It is certain that the effects on annual energy of variability
in meteorological quantities, specifically irradiance, will
dwarf the effects of parameter uncertainty. We opine that,
if several modules were tested, uncertainty ranges for
parameters would increase by a factor of 2 or more, and
that consideration of measurement uncertainty would
increase parameter uncertainty to a lesser extent.
However, we do not believe that the effects of greater
parameter uncertainty, resulting from tests of multiple
modules and consideration of measurement error, would
approach that of variability in irradiance.

120+

80+

40~

477 478 479 480 481
Annual Energy (kWh)

Figure 5. Histogram of annual energy obtained using

TMY2 data for Albuquerque, NM, and sampled values

for performance model coefficients.

The mapping between X; and Y, forms the basis for

sensitivity analysis to determine the relative contribution of
each uncertain input to uncertainty in model output.
Identifying model sensitivities informs efforts to improve
models and to reduce uncertainties through improvements
to module characterization. We performed stepwise
ranked regression, which adds variables sequentially to a
regression model; at each step, the method adds the
variable that explains the greatest fraction of remaining
variance. Ranked regression transforms monotonic
relationships to linear relationships, removing the effects
of disparate parameter scales on the sensitivity analysis
results. Before conducting the regression, we examined
the sample X to remove elements from consideration
where significant correlations (i.e., correlation coefficient
exceeding 0.97) were present. Stepwise regressions are
unreliable when highly correlated predictors are included.
The final regression included: temperature coefficients,

Bup » Osc and ayp ; intercepts Lo, Viype and lypo



; diode factor N ; irradiance coefficients C,, C, and Cj;
and the cubic coefficient of fl(AMa), denoted a,.
Parameters :Boc and VOCO exhibited strong correlations
with Byp and V,po. respectively; coefficient C, is

redundant because C, +C, =1. The coefficients of f,

were found to be highly correlated; the cubic term was
selected as representative because it showed a strong

negative correlation with the values of fl(Al\/Ia) for

AM < 2, implying an overall inverse relationship with
total energy.

Table 1 illustrates the results of the stepwise ranked
regression for total energy. The temperature coefficient
for voltage maximum power, ﬁMP, explains roughly half
of the uncertainty in total energy; the positive value for the
SRRC indicates that as ﬂMP increases, total energy also
increases. The counter-intuitive increase in energy with

increasing [, occurs because S, is negative;
increases in ﬂMP result in less reduction of energy as
temperature increases. The representative coefficient @,

from the function fl(AMa) appears next, indicating a

substantial contribution to uncertainty in total energy from
uncertainty in the correction for atmospheric spectral
effects, which is present through the conversion of
measured short-circuit current to effective irradiance
(Eqg. 8). Roughly half of the remaining uncertainty in total
energy results from uncertainty in the temperature
coefficient for current at maximum power ¢, and from
the intercept term for current at maximum power at
the balance of

reference  conditions, ly;p,, and

uncertainty in total energy arising from the uncertainty in
other coefficients.

Table 1. Stepwise ranked regression for total energy.

Step Variable R2 & SRRC b
1 Bye 0.42 0.64
2 a, 0.77 -0.57
3 Ayp 0.86 0.17
4 I vro 0.88 0.13

a: Cumulative R2 with entry of each variable into model
b: Standardized rank regression coefficient in final model

MODEL UNCERTAINTY

Model uncertainty is present when model results differ
systematically from measurements. Model uncertainty
results from the absence of important parameters from the
model, or from missing or incorrect combinations of
parameters in the model's equations. Although the
formulation of a model determines which parameters are
present, model uncertainty is distinct from parameter
uncertainty. Parameter uncertainty involves the values
assigned to parameters rather than the use of those
parameters in the model’s equations.

We investigated whether model uncertainty is present by
examining two parameter estimates to which the model
results are sensitive, and the agreement between model
results and measurements. Figure 6 illustrates the data

supporting the estimation of ,BMP and the regression

used to determine its value. Correction to one sun nearly
linearizes the measurements, resulting in a relatively small

estimation error in ﬂMP which is the slope of the line fit to

the data. Consequently, sampled slope values differ little
and in general all provide a reasonable fit to the underlying
data. We conclude that there is little evidence of model

uncertainty in the representation of ,BMP .
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Figure 6. Estimation of S, from measured V,,
scaled to one sun.

Figure 7 illustrates the fit between measured data and the

polynomial fl(Al\/Ia) (percentiles  determined by

sampled values for the coefficient @;). Measurements

are taken across three days as indicated by the colors in
Fig. 7. Parameters (or fitted equations) determined by
regression often cannot represent the range of variation
present in the underlying data, due to the smoothing
inherent in regression. Such is the case with the

estimation of fl(AI\/Ia) where the equation fit to the

aggregate of all three days does not represent the
variability apparent across the days. We conclude that
model uncertainty is present in the correction for



atmospheric spectral effects; the sensitivity of model
results to this quantity indicates that further development
of this part of the model may be warranted if more precise
estimates of uncertainty in model results are desired.
Extension of the spectral correction to encompass the
range of variability in measurements would slightly
increase the uncertainty in model results.
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Figure 7. Estimation of fl(Al\/Ia) from measured

|SC , scaled to one sun and normalized to 50°C.

Figure 8 compares model predictions of power (at the
maximum power point) to observations. Comparison is

shown as a function of voltage at maximum power VMP;

variation in VMP reflects a wide range of atmospheric

conditions experienced during the tests. The systematic
agreement between measured and modeled results
indicates that, overall, the model successfully reproduces
the measured quantities, despite the presence of model
uncertainty in several components of the model.

300

O Measured
+ Modeled

200+
[=]
MP 1501

100+

50+

0 ‘ ‘ ‘ ‘ ‘ ‘

27 28 29 30 31 32 33

Vup

Figure 8. Comparison of measured and modeled

maximum power Pyp.

CONCLUSIONS

We quantified uncertainty in the parameters for the Sandia
Array Performance Model considering only estimation
error resulting from regressions. We found significant
correlations between parameter values due to correlations
in the underlying measurements of voltage, current,
irradiance and temperature. We propagated the
uncertainty in parameters through the model to quantity
the resulting uncertainty in total power. We also identified,
using sensitivity analysis, the parameters making the
largest contributions to uncertainty in total power, and
investigated the presence and effects of model
uncertainty.

We found that error in parameter estimation does not lead
to a significant amount of error in total energy projected by
the model. We observe that several components of the
model do not reproduce the full variability in the underlying
measurements due to the smoothing inherent when
estimating parameters by regression. However, we did
not find that the model uncertainty contributes significantly
to differences between estimated and measured power.

We note that this work is based on testing of a single cSi
module, and thus, the uncertainty in total power does not
consider variability between modules of the same
production lot, nor the effects of measurements error. We
opine that, if quantified and propagated, variability
between similar modules would lead to significantly
greater uncertainty in total power, by roughly a factor of 2
or more. We defer quantification of the effects of
measurement uncertainty to further analyses.
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