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Introduction
• Motivation

­ Develop models for reliable predictions of failure in structural alloys, 

e.g. high strength rolled aluminum alloys

• Current available models are inadequate to model the evolution of 

anisotropic damage in rolled aluminum alloys

­ Usually restricted to isotropic material behavior

­ Detailed descriptions of the ductile failure processes based on micro-

mechanics are needed, i.e. void nucleation, growth and coalescence

• X-ray computed tomography (CT) could reveal the three-dimensional 

structure of inclusions and voids

­ Attenuation to X-rays is correlated to the density of the material

• In-situ X-ray CT may provide the detailed nature and evolution of the 

damage and its relationship to the material microstructure
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• Specimens were machined from the 

center layer of a certified 4” rolled Al 

7075-T7351 plate.  

• Uniform tension and notched tension 

with notch width of 3.05 mm (0.120 in)

• Same minimal diameter of 1.5 mm and 

same overall specimen length  

• The geometry of the notch affects the 

stress triaxiality which is known to 

promote void growth
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In-situ X-Ray CT Experiment

. . .

N radiographs
dj, Fj

θθθθi

X-Ray

CCD

The ith radiograph

For i = 1:N (720 or 1440)

θi = θi-1+∆θ

The jth 

reconstructed 

Sample

For j = 1:M (> 4)

Scan
Reconstruction

~ 2500x1800 pixels

Synchrotron-radiation 

computed tomography 

(SRCT) 

4



Grain Analysis Using EBSD
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• The grain is about 

­ 300 um long in R-direction, 

­ 100 um in T- direction, 

­ 50 um in S-direction

• Grain boundary is defined by 5o angle difference in EBSD
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Component Al Mg Si Cu Zn Fe Cr Mn

Wt.% 87-91 2.1-2.9 <0.4 1.2-2 5-6 < 0.5 0.18-

0.28

<0.3



Conventional mechanical characterization 
of the material

• MTS 858 table top system;

• Ball joint for better alignment;

• Extensometer gage length is 

0.3 inch;

• Displacement controlled test.
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Anisotropy of ductility was found in 
rolled material
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In-Situ XCT Experiment
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In-Situ Loading Stage

• Modified beamline 8.3.2 loading stage for tensile 

loading

− Step motor open-loop control

− New fixture design for easy specimen mounting

− New grips with ball joint for precision alignment 

− New confocal displacement sensor

Crosshead
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Data of a Horizontal Slice
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Voids Evolution

@ Yield point, 

- nearly intact

ST Scan 2

Scan 5 Scan 6

@ Necking

- Void growth

@ Failure 

- Coalescence

Scan 4

@ Maximum stress@ Hardening

Scan 3



Voids Evolution for the Specimen in 
Rolling Direction
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(a) area used for projections in 

R-T plane

(b) 3D rendered image 

of voids (orange color) 

and constituent particles 

(white color) at the original 

unloaded state 

(d) 3D rendered image of 

voids at failure state
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(c) 3D rendered image of    

voids at the original state



Voids Evolution for the Specimen in 
the Rolling Direction (cont’d)
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(a) Voids at the original state

Voids were nucleated at the second particle location and voids growth 

were observed. The voids growth was nearly isotropic.

(b) Voids at the failure state



Voids Evolution for the Specimen 
Loaded in Transverse Direction
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Voids Evolution for the Specimen Loaded 
in Transverse Direction (cont’d) 
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(a) Voids at the original state

Voids nucleation, growth and coalescence were observed. The voids 

growth and coalescence had one dimensional preference along 

“stringers” in the rolling direction. 

(b) Voids at the failure state



Voids Evolution for the Specimen Loaded 
in the Short Transverse Direction 
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(b) 3D rendered image of voids (orange color) 

and constituent particles (white color) at the 

original unloaded state 
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Voids Evolution for the Specimen Loaded 
in the Short Transverse Direction (cont’d)
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(a) Voids at the original state

Voids nucleation, growth and coalescence were observed. The voids 

growth and coalescence had planar preference in the R-T plane.

(b) Voids at the failure state



Failure Surfaces

ST SSSR
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Second Phase Particles

• Both Iron-rich and 

Magnesium-rich second 

phase particle were 

identified

• Voids were initiated at the 

locations of the second 

phase particle
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Failure Modes
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Summary

• XCT data were obtained at incremental loading steps for 7075-

T7351 aluminum specimens loaded in three principal material 

directions

• The resolution of SRCT data is 900nm, which allows 

elucidation of the mechanisms governing void growth and 

coalescence. The resolution may be not fine enough for 

nucleation

• SEM imaging and EDS confirmed that the voids were initiated 

at the locations with second phase particle

• The constituent particles tend to align with the rolling direction 

in the form of stringers

• The voids and anisotropic failure are closely associated with 

these strings of particles

• Void growth and coalescence show anisotropy in three loading 

directions
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Questions?Questions?

Thank you!


