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Remap Subproblem

From our second talk, optimization based remap requires the solution to
the remap subproblem

mineF h
ij

K∑
i=1

∑
eκj∈eNi

(F̃ h
ij − F̃T

ij )2 subject to


F̃ h

ij = −F̃ h
ji

mmin
i ≤ m̃i +

∑
eκj∈eNi

F̃ h
ij ≤ mmax

i .

When we enforce the antisymmetric constraint F̃ h
ij = −F̃ h

ji explicitely, we
can reformulate the problem into

min
~F∈RM

1

2
(~F − ~FH)T(~F − ~FH) subject to

~bmin ≤ A~F ≤ ~bmax

(1)

where A ∈ RK×M denotes a sparse matrix containing only -1, 0, and 1
entries.
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Dual Reformulation

Rather than solve

min
~F∈RM

1

2
(~F − ~FH)T(~F − ~FH) subject to

~bmin ≤ A~F ≤ ~bmax ,

(2)

directly, we solve it’s dual formulation,

min
(~λ,~µ)∈R2K

+

1

2
‖AT~λ− AT~µ‖2

2 − 〈~λ,~bmin − A~FH〉 − 〈~µ,−~bmax + A~FH〉 .

This allows us to reformulate the remap subproblem into a simpler,
bound-constrained optimization problem.
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Dual Reformulation

Theorem (Y., R., B. 2011)
Let us define Jp : RM → R and Jd : R2K → R as

Jp(~F ) =
1

2
‖~F − ~FH‖2

2

Jd(~λ, ~µ) =
1

2
‖AT~λ− AT~µ‖2

2 − 〈~λ,~bmin − A~FH〉 − 〈~µ,−~bmax + A~FH〉.

Then, we have that

min
F∈RM

{
Jp(~F ) : ~bmin ≤ A~F ≤ ~bmax

}
= min

(~λ,~µ)∈R2K
+

{
Jd(~λ, ~µ)

}
Furthermore,

{~FH + AT(~λ∗ − ~µ∗)} = arg min
F∈RM

{
Jp(~F ) : ~bmin ≤ A~F ≤ ~bmax

}
whenever

(~λ∗, ~µ∗) ∈ arg min
(~λ,~µ)∈R2K

+

{
Jd(~λ, ~µ)

}
.
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Comments about the Dual Reformulation

The point (~0,~0) is both dual feasible and near the optimal solution.

Since (~0,~0) lies close to the optimal solution, Newton’s method
should converge quadratically (assuming we address the inequality
constraints).

Unfortunately, addressing the inequality constraints is difficult

The active set changes between iterations.
The initial guess lies on the edge of the feasible set.
As a result, neither active-set methods or barrier based interior point
methods are appropriate for this problem.

In order to address these difficulties, we apply a simplified version of
the Coleman-Li reflective Newton algorithm.
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Reformulation of the Optimality Conditions

Definition
We define the diagonal operator, Diag : Rm → Rm×m, as

[Diag(~x)]ij =

{
~xi when i = j
0 ” i 6= j

.

Definition
For some symmetric, positive semidefinite H ∈ Rm×m and some ~b ∈ Rm,
we define the operator vH,~b : Rm → Rm as

vH,~b(~x) =

{
~xi when [H~x + ~b]i ≥ 0

1 ” [H~x + ~b]i < 0
.

When both H and ~b are clear from the context, we abbreviate this
function as v .
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Reformulation of the Optimality Conditions

Lemma
Let H ∈ Rm×m be symmetric, positive semidefinite and let ~b ∈ Rm.
Then, for some ~x∗ ≥ 0, we have that

~x∗ ∈ arg min
x∈Rm

+

{
1

2
〈H~x ,~x〉+ 〈~b,~x〉

}
⇐⇒ Diag(v(~x∗))(H~x∗ + ~b) = 0.

This lemma allows us to reformulate a bound-constrained, quadratic
program as a piecewise-differentiable system of equations.
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Newton’s Method Applied to the Reformulation

In order to apply Newton’s method, we require the derivative of the
reformulated function

Definition
For some symmetric, positive semidefinite H ∈ Rm×m and some ~b ∈ Rm,
we define the operator KH,~b : Rm → Rm×m as

[KH,~b(~x)]ii =

{
1 when [H~x + ~b]i ≥ 0

0 ” [H~x + ~b]i < 0
.

When H and ~b are clear from context, we abbreviate this as K .

Lemma (Y., R., B. 2011)

Let H ∈ Rm×m be symmetric, positive definite, ~b ∈ Rm, and define J as

J(~x) = Diag(v(~x))(H~x + ~b).

Then, we have that

J ′(~x) = K (~x)Diag(H~x + ~b) + Diag(v(x))H.
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Newton’s Method Applied to the Reformulation

We may now apply Newton’s method to the nonlinear system by solving

(K (~x)Diag(H~x + ~b) + Diag(v(~x))H)~p = −Diag(v(~x))(H~x + ~b)

for p. In our case, we accomplish this by a sparse-LU factorization.
Nonetheless, in some cases we can be slightly more efficient.
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Reformulation of the Newton System

Definition
For some symmetric, positive semidefinite H ∈ Rm×m and some ~b ∈ Rm,
we define the operator DH,~b : Rm

+ → Rm×m as

DH,~b(~x) = Diag(vH,~b(~x))1/2.

When both H and ~b are clear from the context, we abbreviate this
operator as D.

Lemma (Y., R., B. 2011)

Let H ∈ Rm×m be symmetric, positive semidefinite and let ~b ∈ Rm.
Then, we have that

(K (~x)Diag(H~x + ~b) + Diag(v(~x))H)~p = −Diag(v(~x))(H~x + ~b)

⇐⇒(K (~x)Diag(H~x + ~b) + D(~x)HD(~x))~q = −D(~x)(H~x + ~b)

where ~p = D(x)~q.

We can solve the second system with a sparse-Choleski factorization.
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Choleski v. LU

As long as we remain strictly feasible, we can reformulate the
problem into a symmetric, positive definite system solvable by
Choleski.

However, in order to remain strictly feasible, we require a reflective
linesearch detailed by Coleman and Li.

Since we start so close to optimality, we do not enforce strict
feasibility. Rather, when we become infeasible, we solve the
nonlinear system with a LU factorization.
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Dual Algorithm for the Remap Subproblem

1 Define H ∈ R2K×2K and b ∈ R2K as

H =

[
AAT −AAT

−AAT AAT

]
~b =

[
A~FH − ~bmin

−A~FH + ~bmax

]
.

2 Initialize ~x = ~0.
3 Until ‖Diag(v(~x))(H~x + ~b)‖ becomes small or we exceed a fixed

number of iterations.
1 When feasible, solve

(K(~x)Diag(H~x + ~b) + D(~x)HD(~x))~q = −D(~x)(H~x + ~b)

and set ~p = D(x)~q. Otherwise, solve

(K(~x)Diag(H~x + ~b) + Diag(v(~x))H)~p = −Diag(v(~x))(H~x + ~b).

2 Set ~x = ~x + ~p.
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Transport Formulation

Consider the transport equations

∂tρ +∇ · ρv = 0 on Ω× [0,T ] and ρ(x, 0) = ρ0(x).

In order to compute one forward step of incremental remapping, we apply
the following subalgorithm

Input Density approximation ~ρ n = (ρn
1, . . . , ρ

n
K ) at time tn, time step ∆tn

Output Density approximation ~ρ n+1 = (ρn+1
1 , . . . , ρn+1

K ) at time tn+1

1 Project grid: Kh(Ω) 3 xp 7→ xp + ∆tnv = x̃p ∈ K̃h(Ω̃)

2 Transport m and ρ:
∀κ̃i ∈ K̃h(Ω̃) set m̃i = mn

i and ρ̃i = m̃i/vol(κ̃i )

3 Remap density: ~ρ n+1 = R({ρ̃1, . . . , ρ̃K})
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Rotating Hump

In our first example, we rotate a smooth hump in a circular flow.

0.2 0.4 0.6 0.8 1

0.2
0.4

0.6
0.8

1
0

0.2

0.4

0.6

0.8

1

xy

,
J. Young Optimization-Based Modeling: Part 3 – Monotone Methods for Transport without Limiters 18



Rotating Hump: Accuracy

LVLT

#cells #remaps L2 err L1 err L2 rate L1 rate

100×100 5026 4.00e-03 8.88e-04 1.70 1.67
120×120 6031 2.94e-03 6.59e-04 1.69 1.65
140×140 7037 2.35e-03 5.30e-04 1.64 1.60

FCRT

#cells #remaps L2 err L1 err L2 rate L1 rate

100×100 5026 3.89e-03 8.63e-04 1.68 1.62
120×120 6031 2.85e-03 6.45e-04 1.69 1.61
140×140 7037 2.29e-03 5.21e-04 1.63 1.56

OBT

#cells #remaps L2 err L1 err L2 rate L1 rate

100×100 5026 4.11e-03 9.38e-04 1.81 1.81
120×120 6031 2.95e-03 6.83e-04 1.82 1.78
140×140 7037 2.33e-03 5.46e-04 1.75 1.70
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Rotating Combo

In our second example, we rotate a combination of the rotating hump
above, a cone, and a slotted disk using the same velocity field
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Rotating Combo: Computational Cost

Grid Size 40×40 80×80 160×160 320×320

OBT 4.00 34.21 422.85 4108.27
FCRT 0.83 5.48 45.27 375.90
LVLT 0.89 5.84 45.38 362.65

The cost of OBT is about 10 times higher than FCRT or LVLT.
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Rotating Combo: Qualitative Results for OBT
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Rotating Combo: Qualitative Results for FCRT
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Rotating Combo: Qualitative Results for LVLT
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Rotating Slotted Disk

In our third example, we rotate the slotted disk about it’s axis one full
revolution.
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Rotating Slotted Disk: Robustness

1/∆t=100
CFL=1.00

1/∆t=62
CFL=1.60

1/∆t=61
CFL=1.62

1/∆t=45
CFL=2.20

OBT 2.14e-02 2.37e-02 2.38e-02 2.60e-02
FCRT 1.97e-02 2.19e-02 2.21e-02 3.00e-02
LVLT 2.14e-02 2.36e-02 8.15e-01 3.47e+54

1/∆t=44
CFL=2.25

1/∆t=19
CFL=5.50

1/∆t=18
CFL=5.21

OBT 2.62e-02 4.02e-02 4.36e-02
FCRT 6.00e+06 9.45e+38 1.83e+40
LVLT 2.85e+56 2.83e+79 6.23e+77

OBT is far more robust than the other methods.
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Rotating Slotted Disk: Qualitative Results for OBT
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Summary and Conclusions

Dual reformulation of OBR provides an effective way to recast OBR
as a bound constrained optimization problem.

Reflective-Newton method gives an efficient algorithm to solve the
dual reformulation.

OBR works well on transport problems.

Slower than FCR or van Leer.
Far more robust than either method.
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