



Tall and Skinny  
SAND2011-4037C

# QR Factorizations in MapReduce

David F. Gleich

Paul G. Constantine

MapReduce 2011 Workshop

8 June 2011



Thanks to Mark Hoemmen, Tammy Kolda,  
Todd Plantenga, Craig Ulmer, Justin Basilico  
@ Sandia and  
James Demmel, Gray Ballard, Austin  
Benson @ Berkeley for helpful discussions.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

# MapReduce is great for TSQR!

*Data* A tall and skinny (TS) matrix by rows

Map QR factorization of local rows

Reduce QR factorization of local rows



Demmel et al. showed that this construction works to compute a QR factorization with *minimal communication*

Input **500,000,000-by-100 matrix**

Each record **1-by-100 row**

HDFS Size **423.3 GB**

Time to compute  $\|\mathbf{A}\mathbf{e}_i\|$  (the norm of each column) **161 sec.**

Time to compute  $\mathbf{R}$  in  $\text{qr}(\mathbf{A})$  **387 sec.**

**git clone https://github.com/dgleich/mrtsqr**  
dts crouse ucrba:\vtsqr\com\cow\adretci\mrt

*On a 64-node Hadoop cluster with 4x2TB, one Core i7-920, 12GB RAM/node*

# Outline

## Tall and Skinny QR factorizations

Implementation in MapReduce

Synthetic experiments for performance

Real-world test: Tinyimages

Simulation Informatics

# QR Factorization

Let  $\mathbf{A} : m \times n, m \geq n$ , real

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

$\mathbf{Q}$  is  $m \times n$  orthogonal ( $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$ )

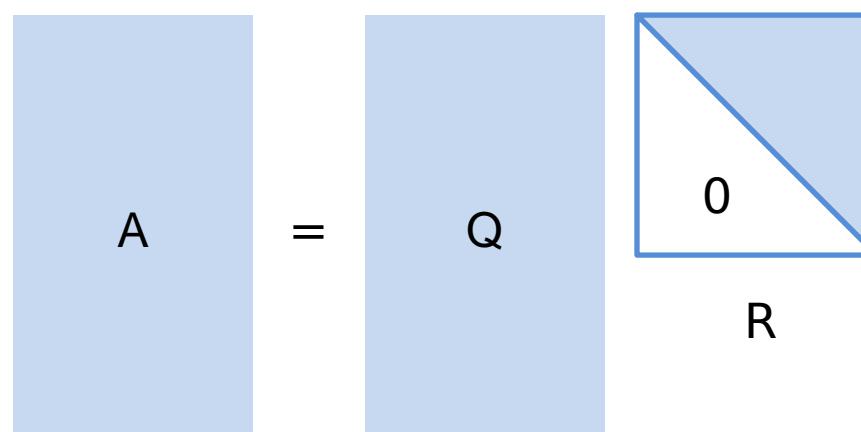
$\mathbf{R}$  is  $n \times n$  upper triangular.

## Using QR for regression

$\min \|\mathbf{b} - \mathbf{Ax}\|$  is given by the solution of  $\mathbf{Rx} = \mathbf{Q}^T \mathbf{b}$

## QR is block normalization

“normalize” a vector  
usually generalizes to computing  $\mathbf{Q}$  in the QR



# Tall and Skinny QR factorizations

Tall and Skinny matrices

$m \gg n$  arise in

regression with many samples

block iterative methods

panel factorizations

**model reduction problems**

general linear models

with many samples

**tall-and-skinny SVD/PCA**

**all of these applications  
need a QR factorization**

some only need  **$R$** !

A



**Normal Equations**

Use  $\mathbf{A}^T \mathbf{A}$  ? Yields only  $O(\sqrt{\varepsilon})$  accuracy.

# Communication avoiding TSQR

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} \quad A = \underbrace{\begin{bmatrix} Q_1 & & & \\ & Q_2 & & \\ & & Q_3 & \\ & & & Q_4 \end{bmatrix}}_{8n \times 4n} \underbrace{\begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{bmatrix}}_{4n \times n}$$

First, do QR factorizations of each local matrix  $\mathbf{A}_i$

Second, compute a QR factorization of the new “R”

$$A = \underbrace{\begin{bmatrix} Q_1 & & & \\ & Q_2 & & \\ & & Q_3 & \\ & & & Q_4 \end{bmatrix}}_{8n \times 4n} \underbrace{\tilde{Q}}_{4n \times n} \underbrace{\tilde{R}}_{n \times n}$$

Demmel et al. 2008. *Communicating avoiding parallel and sequential QR*.

# Communication avoiding TSQR

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} \quad A = \underbrace{\begin{bmatrix} Q_1 & & & \\ & Q_2 & & \\ & & Q_3 & \\ & & & Q_4 \end{bmatrix}}_{8n \times 4n} \underbrace{\begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{bmatrix}}_{4n \times n} = \underbrace{\begin{bmatrix} Q_5 \\ Q_6 \end{bmatrix}}_{4n \times 2n} \underbrace{\begin{bmatrix} R_5 \\ R_6 \end{bmatrix}}_{2n \times n}$$

But we actually do the second step recursively!

$$A = \underbrace{\begin{bmatrix} Q_1 & Q_2 & Q_3 & Q_4 \end{bmatrix}}_{8n \times 4n} = Q \quad \underbrace{\begin{bmatrix} Q_5 \\ Q_6 \end{bmatrix}}_{4n \times 2n} \underbrace{Q_7}_{2n \times n} \underbrace{R_7}_{n \times n}$$

Demmel et al. 2008. *Communicating avoiding parallel and sequential QR*.

# Fully serial TSQR

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix}$$

Compute QR of  $\mathbf{A}_1$ ,  
read  $\mathbf{A}_2$ , update QR, ...

$$A_1 = Q_1 R_1; \begin{bmatrix} R_1 \\ A_2 \end{bmatrix} = Q_2 R_2; \begin{bmatrix} R_2 \\ A_3 \end{bmatrix} = Q_3 R_3; \begin{bmatrix} R_3 \\ A_4 \end{bmatrix} = Q_4 R_4$$

$$A = \underbrace{\begin{bmatrix} Q_1 & I_{2n} & I_{2n} & I_{2n} \\ \hline & 8n \times 7n & & \end{bmatrix}}_{8n \times 7n} \underbrace{\begin{bmatrix} Q_2 & I_{2n} & I_{2n} \\ \hline & 7n \times 5n & & \end{bmatrix}}_{7n \times 5n} \underbrace{\begin{bmatrix} Q_3 & I_{2n} \\ \hline & 5n \times 3n \end{bmatrix}}_{5n \times 3n} \underbrace{Q_4}_{3n \times n} \underbrace{R}_{n \times n}$$

$= Q$

Demmel et al. 2008. *Communicating avoiding parallel and sequential QR*.

*More generally, any sequence of QR factorizations in a tree that yield a single R is a valid QR factorization.*

*In our MapReduce implementation, we combine these two steps!*

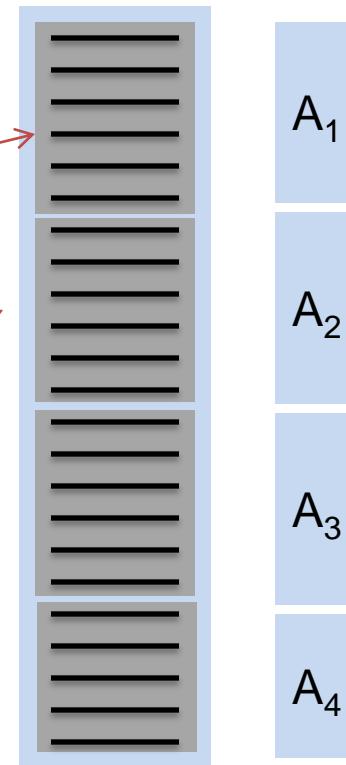
# MapReduce matrix storage

$\mathbf{A} : m \times n, m \gg n$

Key is an arbitrary row-id

Value is the  $1 \times n$  array for  
a row.

Each submatrix  $\mathbf{A}_i$  is an  
input split.



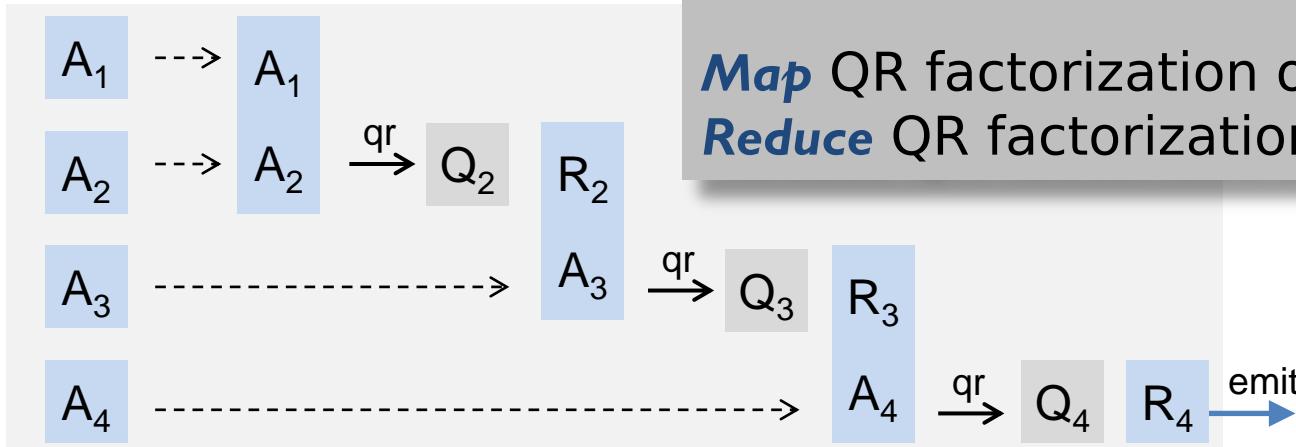
# Algorithm

**Data** Rows of a matrix

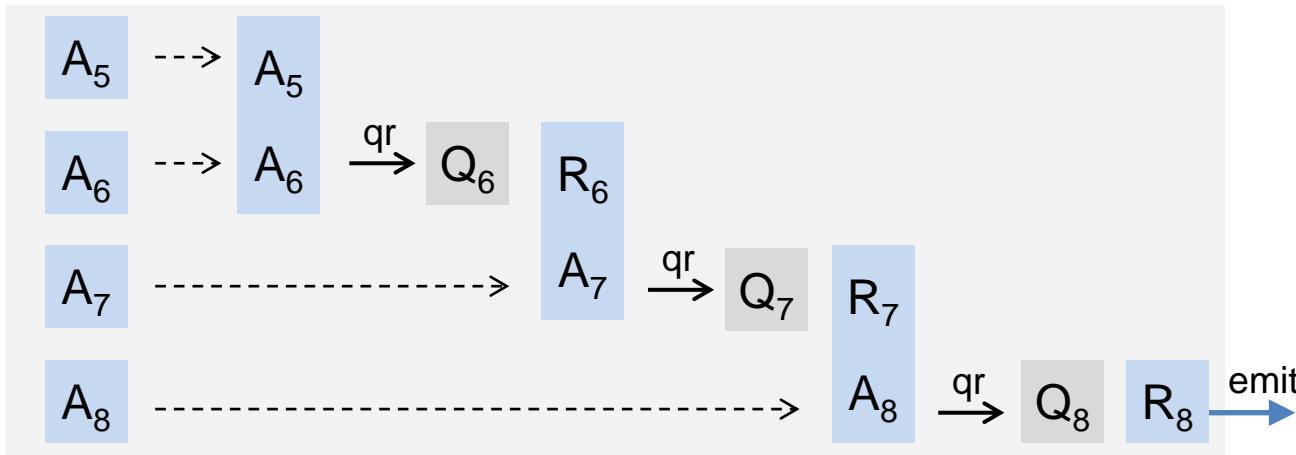
**Map** QR factorization of rows

**Reduce** QR factorization of rows

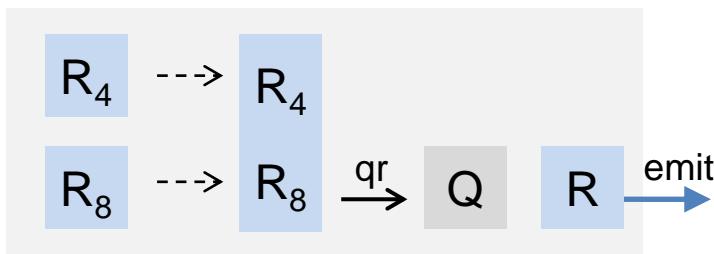
Mapper 1  
Serial TSQR



Mapper 2  
Serial TSQR



Reducer 1  
Serial TSQR



# Key Limitation

Computes only  $\mathbf{R}$  and not  $\mathbf{Q}$

But  $\mathbf{Q} = \mathbf{A}\mathbf{R}^+$  (pseudo-inverse) with another MapReduce iteration.

This approach has poor numerical stability, but we (in collaboration with Jim Demmel and Austin Benson) are working on it. (Multiple iterations do better)

We use random keys for new output – makes it hard to store data to recreate  $\mathbf{Q}$  in a different fashion.

# In hadoopy

```
import random, numpy, hadoopy
class SerialTSQR:
    def __init__(self, blocksize, isreducer):
        self.bsize = blocksize
        self.data = []
    if isreducer: self.__call__ = self.reducer
    else: self.__call__ = self.mapper

    def compress(self):
        R = numpy.linalg.qr(
            numpy.array(self.data), 'r')
        # reset data and re-initialize to R
        self.data = []
        for row in R:
            self.data.append([float(v) for v in row])

    def collect(self, key, value):
        self.data.append(value)
        if len(self.data) > self.bsize * len(self.data[0]):
            self.compress()
```

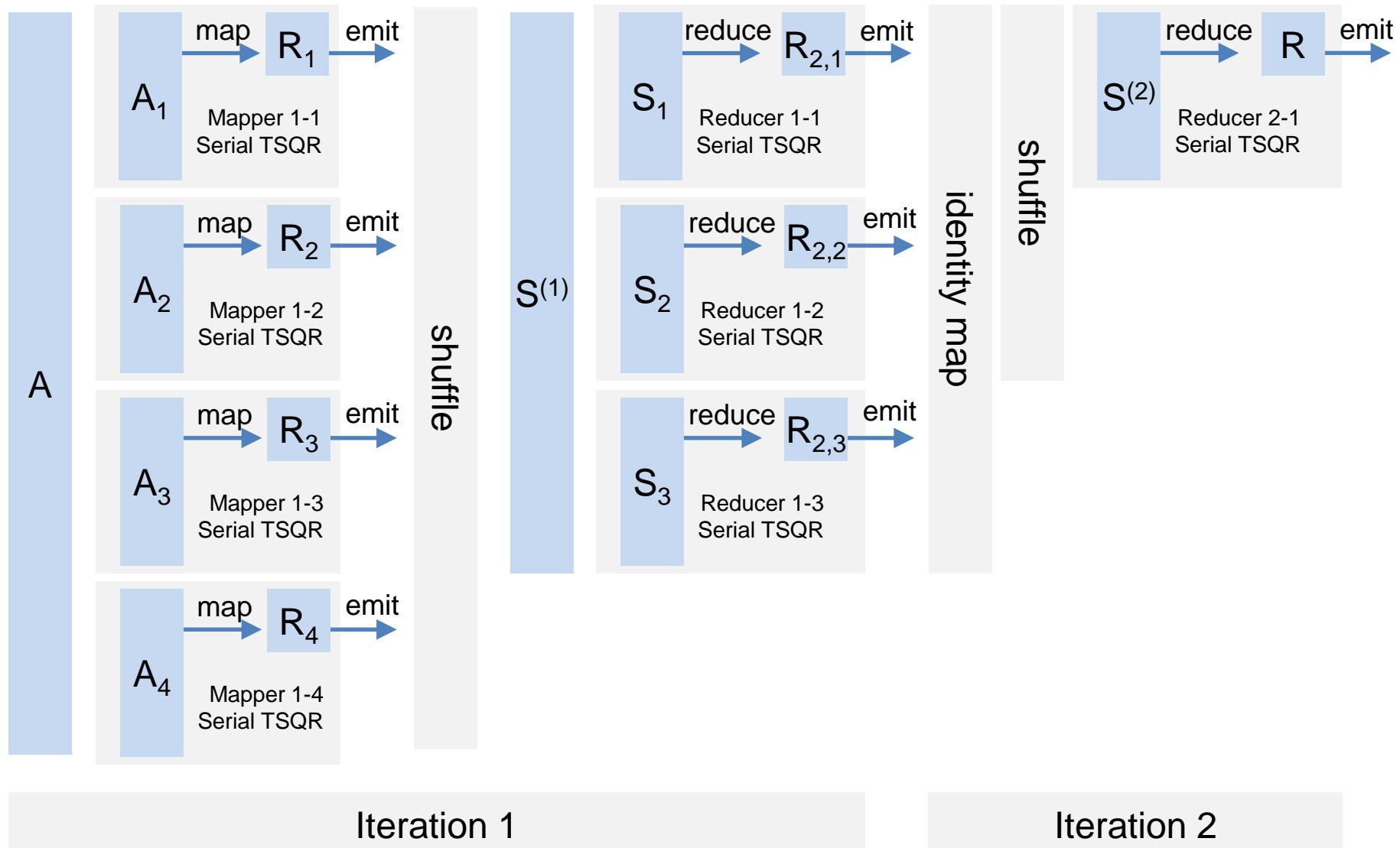
```
def close(self):
    self.compress()
    for row in self.data:
        key = random.randint(0, 2000000000)
        yield key, row

def mapper(self, key, value):
    self.collect(key, value)

def reducer(self, key, values):
    for value in values:
        self.mapper(key, value)

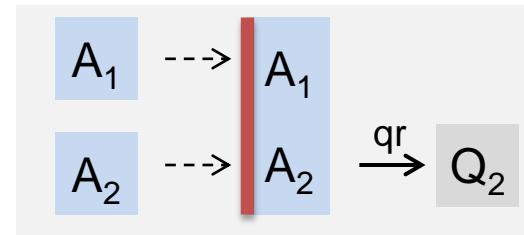
if __name__ == '__main__':
    mapper = SerialTSQR(blocksize=3, isreducer=False)
    reducer = SerialTSQR(blocksize=3, isreducer=True)
    hadoopy.run(mapper, reducer)
```

# Too many maps? Add an iteration!

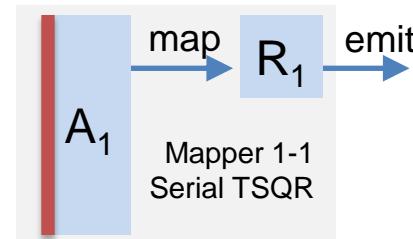


# mrttsqr – summary of parameters

**Blocksize** How many rows to read before computing a QR factorization, expressed as a multiple of the number of columns (See paper)

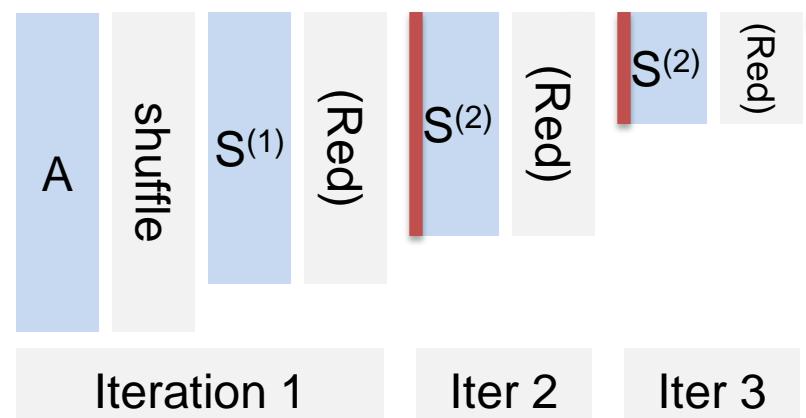


**Splitsize** The size of each local matrix



**Reduction tree**

The number of reducers and iterations to use



# Hadoop streaming frameworks

Synthetic data test 100,000,000-by-500 matrix (~500GB)

Codes implemented in MapReduce streaming

Matrix stored as TypedBytes lists of doubles

Python frameworks use Numpy+Atlas

Custom C++ TypedBytes reader/writer with Atlas

*New non-streaming Java implementation too*

|                | <i>Iter 1</i><br>QR (secs.) | <i>Iter 1</i><br>Total (secs.) | <i>Iter 2</i><br>Total (secs.) | <i>Overall</i><br>Total (secs.) |
|----------------|-----------------------------|--------------------------------|--------------------------------|---------------------------------|
| <b>Dumbo</b>   | 67725                       | 960                            | 217                            | 1177                            |
| <b>Hadoopy</b> | 70909                       | 612                            | 118                            | 730                             |
| <b>C++</b>     | <b>15809</b>                | <b>350</b>                     | <b>37</b>                      | <b>387</b>                      |
| <b>Java</b>    |                             | 436                            | 66                             | 502                             |

*C++ in streaming beats a native Java implementation.*

*All timing results from the Hadoop job tracker*

# Varying *splitsize* Synthetic Data

| Cols. | Iters. | Split<br>(MB) | Maps | Secs.      |
|-------|--------|---------------|------|------------|
| 50    | 1      | 64            | 8000 | 388        |
| –     | –      | 256           | 2000 | 184        |
| –     | –      | 512           | 1000 | <b>149</b> |
| –     | 2      | 64            | 8000 | 425        |
| –     | –      | 256           | 2000 | 220        |
| –     | –      | 512           | 1000 | 191        |
| <hr/> |        |               |      |            |
| 1000  | 1      | 512           | 1000 | 666        |
| –     | 2      | 64            | 6000 | 590        |
| –     | –      | 256           | 2000 | 432        |
| –     | –      | 512           | 1000 | <b>337</b> |

Increasing split size improves performance (accounts for Hadoop data movement)

Increasing iterations helps for problems with many columns.

(1000 columns with 64-MB split size overloaded the single reducer.)

# Tinyimages PCA

1000 pixels

80,000,000 images

A →  
Zero  
mean  
rows

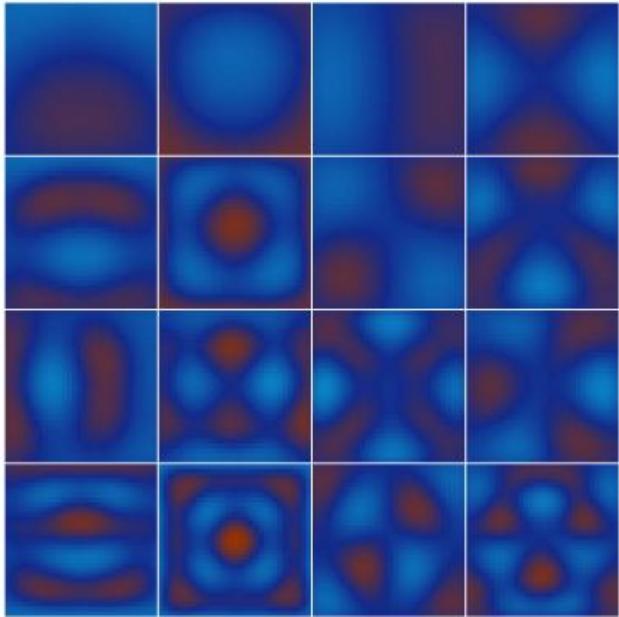
X

TSQR

SVD

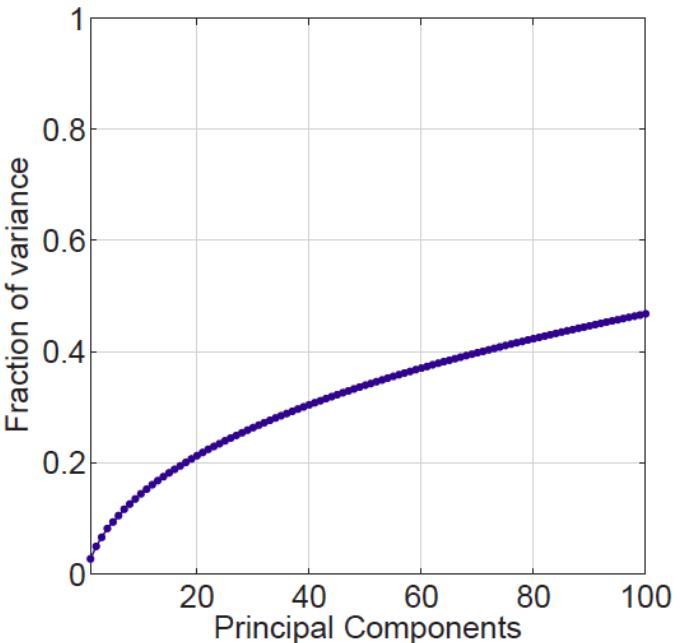
$\Sigma$    V

First 16 columns  
of V as  
images  
(principal  
components)



MapReduce

Post Processing



Tiny images is a 300GB database of images from 10,000 google queries. TSQR took about 30 minutes using dumbo framework

# The problem Simulation ain't cheap!

## 21<sup>st</sup> Century Science in a nutshell

Experiments are not practical / feasible.

Simulate things instead.

But do we trust the simulations?

We're trying!

Input  
Parameters  
→  
 $s$



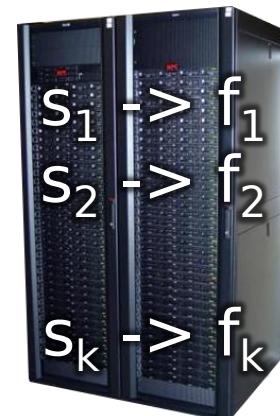
## 21.1<sup>st</sup> Century Science in a nutshell?

Simulations are expensive.

Let data provide a surrogate.

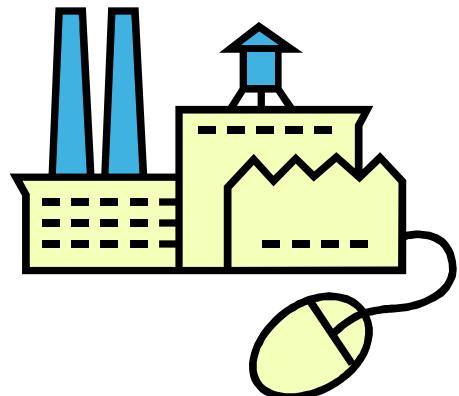
Time history  
of simulation  
→  
 $f$

The Database



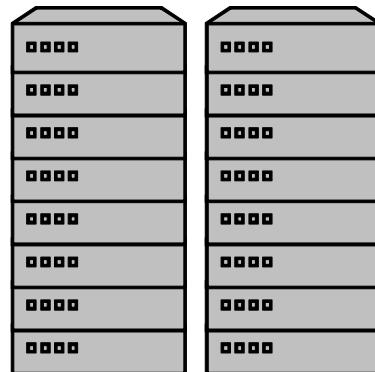
# *The idea and vision: Store the runs!*

Supercomputer



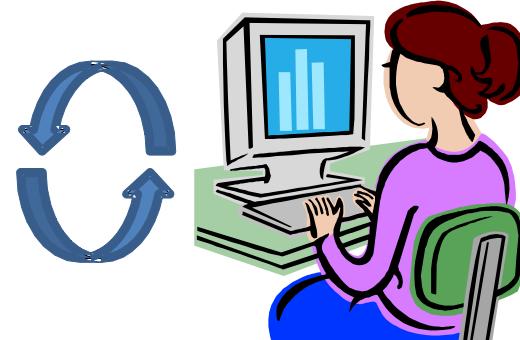
*Each multi-day HPC simulation generates gigabytes of data.*

MapReduce cluster



*A MapReduce cluster can hold hundreds or thousands of old simulations ...*

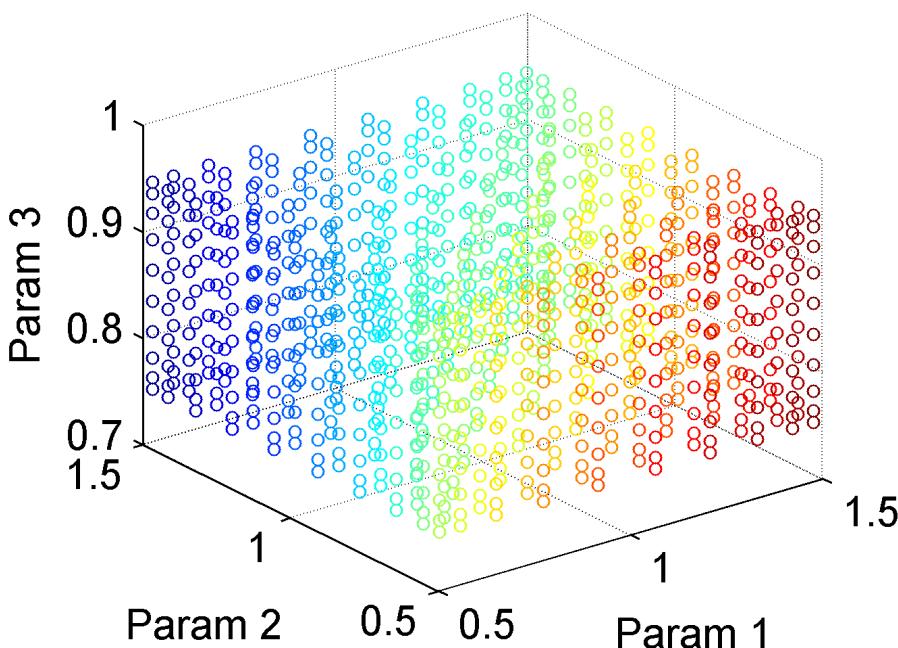
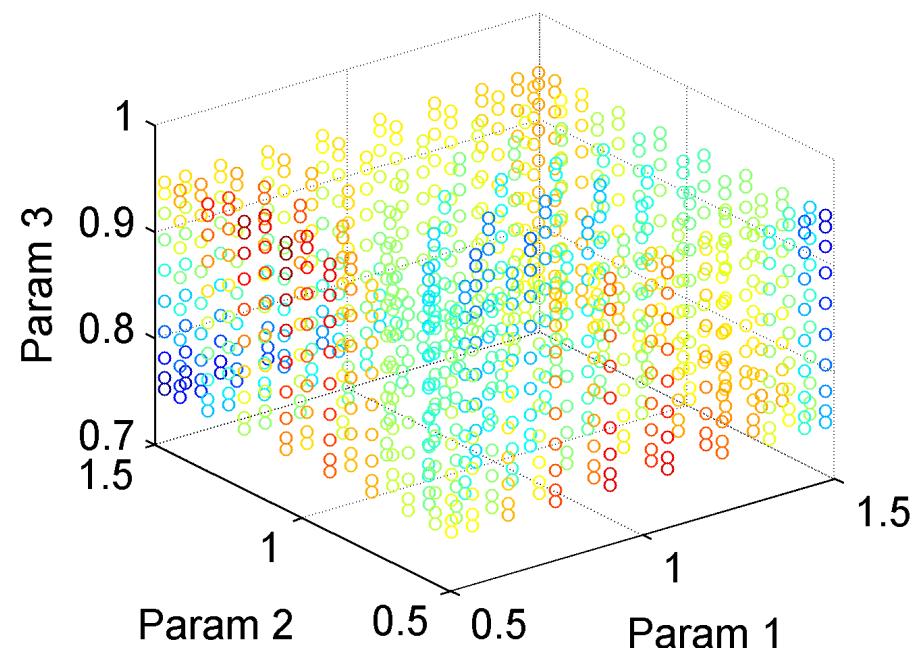
Engineer



*... enabling engineers to query and analyze months of simulation data for statistical studies and uncertainty quantification.*

# Data driven Green's functions

500GB of simulation data  $\rightarrow$  TSSVD on  $6,400,000 \times 1000$  matrix



The simulation varies most in the corners of the parameter space.

*These analyses will help understand which parameters matter, and where to continue running the simulations.*

# Future work & Desiderata

Round off analysis of MR job for **Q**

Compare against MPI based TSQR *What's a fair way?*

Compare against random sampling

Non-random keys, better partitioners?

A *mathematical reduce*

Serialization for numeric arrays *Roll my own?*

# Google mrttsqr gleich

```
git clone https://github.com/dgleich/mrttsqr
```

# Why not the normal equations?

Given  $\mathbf{A}$

compute  $\mathbf{B} = \mathbf{A}^T \mathbf{A}$

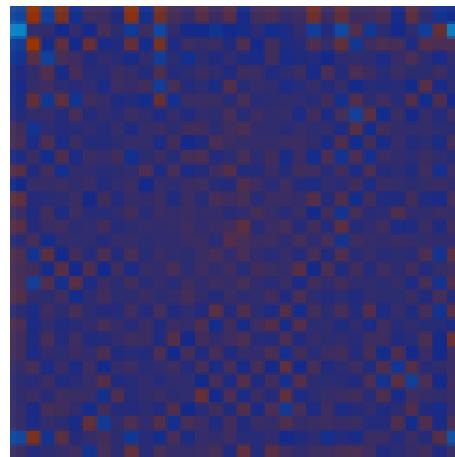
then  $\mathbf{B} = \mathbf{R}^T \mathbf{R}$  with a Cholesky factorization

And it's the same  $\mathbf{R}$  as in the QR!

But, you only get  $O(\sqrt{\varepsilon})$  accuracy vs.  $O(\varepsilon)$  accuracy for QR.  
( $\varepsilon$  is the machine precision)

# Tinyimages Regression

We first solved a regression problem by trying to predict the sum of red-pixel values in each image as a linear combination of the gray values in each image. Formally, if  $r_i$  is the sum of the red components in all pixels of image  $i$ , and  $G_{i,j}$  is the gray value of the  $j$ th pixel in image  $i$ , then we wanted to find  $\min \sum_i (r_i - \sum_j G_{i,j} s_j)^2$ . There is no particular importance to this regression problem, we use it merely as a demonstration.



Took about 30 minutes

# *Synthetic Problems*

# Synthetic

Fixed

R

Generate random Q, compute QR

emit

A<sub>1</sub>

Generate random Q, compute QR

emit

A<sub>2</sub>

Generate random Q, compute QR

emit

A<sub>3</sub>

Generate random Q, compute QR

emit

A<sub>4</sub>

shuffle

S<sup>(1)</sup>

Generate random Q, compute QA

emit

A<sub>1</sub>

Generate random Q, compute QA

emit

A<sub>2</sub>

Generate random Q, compute QQ

emit

A<sub>3</sub>

Generate random Q, compute QQ

emit

A<sub>4</sub>

Identity map

shuffle

S<sup>(1)</sup>

Generate random Q, compute

Generate random Q, compute

Generate random Q, compute

Generate random Q, compute

Iteration 1

Iteration 2

# Varying Blocksize Synthetic Data

| Cols. | Blks.      | Iter. 1 |            | Iter. 2    |
|-------|------------|---------|------------|------------|
|       |            | Maps    | Secs.      | Secs.      |
| 50    | 2          | 8000    | 424        | 21         |
| —     | 3          | —       | 399        | 19         |
| —     | 5          | —       | 408        | 19         |
| —     | 10         | —       | 401        | 19         |
| —     | 20         | —       | 396        | 20         |
| —     | 50         | —       | 406        | 18         |
| —     | <b>100</b> | —       | <b>380</b> | <b>19</b>  |
| —     | 200        | —       | 395        | 19         |
| 100   | 2          | 7000    | 410        | 21         |
| —     | 3          | —       | 384        | 21         |
| —     | 5          | —       | 390        | 22         |
| —     | <b>10</b>  | —       | <b>372</b> | <b>22</b>  |
| —     | 20         | —       | 374        | 22         |
| 1000  | 2          | 6000    | 493        | 199        |
| —     | 3          | —       | 432        | 169        |
| —     | <b>5</b>   | —       | <b>422</b> | <b>154</b> |
| —     | 10         | —       | 430        | 202        |
| —     | 20         | —       | 434        | 202        |

Using the C++ framework

# Varying *splitsize* Synthetic Data

| Cols. | Iters. | Split<br>(MB) | Maps | Secs. |
|-------|--------|---------------|------|-------|
| 50    | 1      | 64            | 8000 | 388   |
|       | —      | 256           | 2000 | 184   |
|       | —      | 512           | 1000 | 149   |
| —     | 2      | 64            | 8000 | 425   |
|       | —      | 256           | 2000 | 220   |
|       | —      | 512           | 1000 | 191   |
| 1000  | 1      | 512           | 1000 | 666   |
|       | 2      | 64            | 6000 | 590   |
|       | —      | 256           | 2000 | 432   |
|       | —      | 512           | 1000 | 337   |

Using the C++ framework

# Comparing Frameworks Synthetic Data

| Iter 1   |       |         |       |         |       |
|----------|-------|---------|-------|---------|-------|
|          | Map   |         | Red.  |         | Total |
|          | Secs. | QR (s.) | Secs. | QR (s.) | Secs. |
| Dumbo    | 911   | 67725   | 884   | 2160    | 960   |
| hadoopy  | 581   | 70909   | 565   | 2263    | 612   |
| C++      | 326   | 15809   | 328   | 485     | 350   |
| Java-MTJ |       |         |       |         | 436   |

| Iter 2   |       |       |         | Overall |
|----------|-------|-------|---------|---------|
|          | Map   | Red.  | Total   | Overall |
|          | Secs. | Secs. | QR (s.) |         |
| Dumbo    | 5     | 214   | 80      | 217     |
| hadoopy  | 5     | 112   | 81      | 118     |
| C++      | 5     | 34    | 15      | 37      |
| Java-MTJ |       |       |         | 502     |

All values from Hadoop Job tracker. 100,000,000-by-500 matrix.