
Manycore/GPGPU Portable Computational Mechanics Kernels
via Multidimensional Arrays

H. Carter Edwards
Computing Research Center

Sandia National Laboratories
Albuquerque, New Mexico USA

hcedwar at sandia.gov

Daniel Sunderland
Engineering Sciences Center

Sandia National Laboratories
Albuquerque, New Mexico USA

dsunder at sandia.gov

Chris Amsler
Elec. Eng. Dept.

Kansas State University
Manhattan, Kansas USA

camsler at ksu.edu

Sam Mish
Mathematics Dept.

California State University
Chico, California USA

smish at mail.csuchico.edu

Abstract—Large, complex scientific and engineering appli-
cation code have a significant investment in software kernels
to implement their computational mechanics models. Porting
these computational mechanics kernels to the collection of
modern manycore accelerator devices is a major challenge
in that these devices have diverse programming models, ap-
plication programming interfaces (APIs), and performance
requirements. The Trilinos-Kokkos programming model pro-
vides library-based approach to implement computational
mechanics kernels that are performance-portable to manycore
and GPGPU accelerator devices. This programming model is
based upon three fundamental concepts: (1) there exists one
or more manycore compute devices each with its own memory
space, (2) data parallel kernels are executed via parallel for
and parallel reduce operations, and (3) kernels operate on
multidimensional arrays. Kernel execution performance is,
especially for NVIDIA R© devices, extremely dependent on
data access patterns. An optimal data access pattern can be
different for different manycore devices – potentially leading
to different implementations of computational kernels special-
ized for different devices. The Trilinos-Kokkos programming
model support performance-portable kernels by separating
data access patterns from computational kernels through a
multidimensional array API. Through this API device-specific
mappings of multi-indices to device memory are introduced
into a computational kernel through compile-time polymor-
phism; i.e., without modification of the kernel.

Keywords-HPC Programming model ; multicore ; manycore
; GPGPU

I. INTRODUCTION

Manycore compute devices provide a significant potential
gain in computational performance with respect to both
runtime and energy consumption. Porting large, complex sci-
entific and engineering high performance computing (HPC)
applications to these devices is challenging in that it intro-
duces an additional layer (or two) of parallelism , it can be
difficult to obtain good performance on these devices, and
the diversity of programming models. Many projects have
successfully addressed these challenge by writing distinct
versions of their codes that are specialized for particular
compute devices [1]. However, this approach incurs the
cost of developing, verifying, and maintaining a specialized
code base for each class of compute device. For large,

complex scientific and engineering applications this may be
an unacceptable cost.

The Trilinos-Kokkos programming model provides
library-based approach to implement computational
mechanics kernels that are performance-portable to
manycore and GPGPU accelerator devices. This approach
uses C++ template meta-programming, as opposed to a
new or extended language, for compile-time specialization
of kernels to the target manycore device. The data parallel
programming model and API provides data structures,
parallel for operation, and parallel reduce operation
that are parameterized with respect to the multicore /
manycore device. This approach to multicore / manycore
portability mirrors the approach taken by the Thrust library
[2]. However, the Thrust programming model and API
implements C++ Standard Template Library (STL) container
and iterator semantics as opposed to multidimensional array
semantics.

Performance-portability includes source code portability
of a kernel implementation and performance that is com-
mensurate with a device-specific implementation of that
kernel. Memory access is the dominant constraint on per-
formance; and memory access patterns dominate mem-
ory access performance on NVIDIA R© devices. As such
the Kokkos multidimensional array programming model
uses compile-time polymorphism (i.e., C++ template meta-
programming) to insert device-optimal memory access pat-
terns into computational kernels without modification of the
kernel’s source code.

II. PROGRAMMING MODEL

The Kokkos multidimensional array programming model
is data parallel in that a computational kernel can be
applied in parallel to members of a partitioned data set. This
programming model consists of the following conceptual
components.

1) compute device with many computational threads and
shared memory,

2) multidimensional array,

SAND2011-3953C

3) partitioning and mapping of multidimensional arrays
onto the memory space of a compute device, and

4) application of data parallel computational kernels to
partitioned multidimensional arrays.

A. Manycore Compute Device

A manycore compute device provides many threads of
execution and owns memory that is shared by those compu-
tational threads. Computations performed by the compute
device only access and update data which are resident
in the compute device’s shared memory. A heterogeneous
parallel application utilizes both distributed-memory process
parallelism among a network of compute nodes and shared-
memory thread parallelism within a manycore compute
device. In such an application it is assumed that a distributed-
memory parallel process; e.g., the process associated with
a message passing interface (MPI) rank, has exclusive use
of at most one manycore compute device. This assumption
is made to avoid the complexity associated with managing
multiple compute devices within the same process. However,
the abstraction for a single manycore compute device can
aggregate multiple hardware devices into a single, logical
device.

B. Multidimensional Array

There are several abstractions for multidimensional arrays
which are differentiated by how they are used within an
application. Abstractions currently addressed by Kokkos
include the multivector and the “array valued array.” A
multivector is a homogeneous collection of vectors of the
same length, with data members of the same simple mathe-
matical data type, and those data members resided in the
memory space of a compute device. A multidimensional
array (array valued array) is a similar homogeneous col-
lection of data members where data members are uniquely
identified by a multi-index within a multi-index space. Both
the multivector and multidimensional array have a one
dimensional partitioning into units of data parallel work:
a multivector is parallel-partitioned along its length and
a multidimensional array is parallel-partitioned along one
dimension of its index space. The member data type is
restricted to the simple intrinsic mathematical types of the
computational languages (i.e., C++ and CUDA) so that data
members can be simply and optimally mapped onto compute
devices such as NVIDIA GPGPU. A formal definition for
Kokkos multidimensional array follows.

Definition 1: A Kokkos multi-index is an ordered list of
integer indices denoted by (i0, i1, i2, · · ·).

Definition 2: The rank of a multi-index is the number
of indices; e.g., (1, 3, 5) is a multi-index of rank 3 and
(7, 3, 5, 1) is a multi-index rank 4.

Definition 3: A Kokkos multi-index space I of rank R
is a Cartesian product of integer ranges

I = [0 .. N0)× [0 .. N1)× · · · × [0 .. NR−1) .

The abbreviated notation of I = (N0, N1, N2, · · ·) is used
when there is no ambiguity between denoting a multi-index
versus a multi-index space.

Definition 4: The cardinality of a multi-index space I ,
denoted by #I , is

#I =
R−1∏
j=0

Nj

Definition 5: A Kokkos multidimensional array X con-
sists of

1) a multi-index space XI = (N0, N1, · · · , NR−1),
2) a homogeneous collection of #XI data members, and
3) bijective map between the multi-index space and the

data members; Xmap : XI ↔ {data}.

C. Multidimensional Array Map

There are many valid bijective maps between a multi-
index space and the collection of data members. Typically
these data members reside in a contiguous span of memory
on a compute device. The map for such a multidimensional
array X can be expressed by a base location in memory and
a bijective function between the multi-index space and an
offset in the range [0..#XI). For example, the FORTRAN
and C language multidimensional array index spaces and
offset-maps are as follows.

FORTRAN multi-index space and offset map:
space: [1 .. N0]× [1 .. N1]× [1 .. N2]× · · ·
offset: (i0 − 1) + N0 ∗ ((i1 − 1) + N1 ∗ ((i2 − 1) + N2 ∗ · · ·))

C multi-index space and offset map:
space: [0 .. N0)× [0 .. N1)× [0 .. N2)× · · ·
offset: ((((i0) ∗N1 + i1) ∗N2 + i2) ∗ · · ·)

While many valid multidimensional array maps may exist
their may be one map which yields the best performance for
a computational kernel on a particular compute device, and
a different map which yields the best performance on a dif-
ferent compute device. The Kokkos multidimensional array
programming model allows this map to be specified when
a computational kernel is compiled and without modifying
the kernel’s source code.

D. Data Parallel Work Partitioning

A Kokkos multivector or multidimensional array are parti-
tioned among the threads of a compute device. Each thread
then applies a given computational kernel to that thread’s
assigned partition of the array. Multivectors are partitioned
along their length, under the assumption that operations
applied to each vector are data paralle and that the length
of the multivector is greater than the count of vectors.
Multidimensional arrays are partitioned along exactly one
dimension of the multi-index space. For Kokkos the left-
most dimension was chosen for parallel partitioning by a
consensus of computational kernel developers participating

in a Kokkos software design review; however, it would have
been equally valid to have chosen any other dimension.

The partitioning of a multidimensional array is defined by
the partitioning of its multi-index space (NP , N1, N2, · · ·),
where the left-most NP dimension is partitioned into NP

“atomic” units of parallel work. When a thread applies
the computational kernel to a unit of work, denoted by
iP ∈ [0..NP), the kernel must

• only update array data members that are associated
with that index (iP , ∗, ∗, · · ·) and
• not query array data members that are potentially

updated by another thread applying the kernel to a
different unit of work.

E. Data Parallel Computational Kernels

Computational kernels are currently applied to paral-
lel partitioned work in two ways: parallel_for and
parallel_reduce. A parallel_for application is
“trivially” parallel in that the computational kernel’s work
is fully disjoint. In a parallel_reduce application each
application of the computational kernel generates data that
must be reduced among all work items; e.g., an inner product
generates NP values which must be summed to a single
value.

Definition 6: A parallel_for kernel is a function
that inputs a collection of parameters and data parallel parti-
tioned multidimensional arrays and outputs a corresponding
collection of partitioned arrays.

f : ({α} , {X}) → {Y }
where {α} ≡ input parameters

{X} ≡ input arrays
{Y } ≡ output arrays

Definition 7: A parallel_reduce kernel is a func-
tion that inputs a collection of parameters and data parallel
partitioned arrays and outputs a collection of parameters and
data parallel partitioned arrays.

f : ({α} , {X}) → ({β} , {Y })
where {α} ≡ input parameters

{X} ≡ input arrays
{β} ≡ output parameters
{Y } ≡ output arrays

Each application of a parallel_reduce kernel generates
a contribution to the output parameters. These contributions
are reduced by a mathematically commutative and associa-
tive parameter reduction function fΘ (an implementation
may be non-associative due to round-off in floating point
operations).

f ({α} , {X (iP , · · ·)}) → ({β [iP]} , {Y (iP , · · ·)}) ∀ iP
and then

fΘ ({β [iP] ∀ iP }) → {β}

III. MULTIDIMENSIONAL ARRAY API

The multidimensional array API given in Figure 1 com-
poses (1) a runtime defined multi-index space, (2) a collec-
tion of data members of a compile-time defined simple math-
ematical type, and (3) a compile-time device-polymorphic
map from the multi-index space to data members. Each
device has a default map which may be overridden to support
investigation of alternative maps to improve memory access
performance.

namespace Kokkos {
template < typename ValueType ,

class DeviceType ,
class MapOption = ... >

class MDArrayView {
public:
typedef ValueType value_type ;
typedef DeviceType device_type ;
typedef MapOption map_option ;
typedef ... size_type ;

// Query rank and dimensions of the array.
KOKKOS_MACRO_DEVICE_AND_HOST_FUNCTION
size_type rank() const ;

KOKKOS_MACRO_DEVICE_AND_HOST_FUNCTION
size_type dimension(irank) const ;

// Query cardinality of the array.
KOKKOS_MACRO_DEVICE_AND_HOST_FUNCTION
size_type size();

// Access data member on the device referenced
// by its mapped multi-index.
KOKKOS_MACRO_DEVICE_FUNCTION
value_type & operator()(iP,i1,...) const ;

// A NULL view.
MDArrayView();

// A new view of the same member data viewed by RHS.
MDArrayView(const MDArrayView & RHS);

// Clear this view: if it is the last view to an
// allocated array then deallocate the member data.
˜MDArrayView();

// Clear this view and then assign it to be a
// new view of the same member data viewed by RHS.
MDArrayView & operator = (const MDArrayView & RHS);

};

// Allocate member data on the device and return
// an array view to that member data.
template< typename ValueType , class DeviceType >
MDArrayView<ValueType,DeviceType>
create_mdarray(nP , n1 , n2, ...);

// Copy member data between two arrays with potentially
// different devices. One device can be the Host.
template< typename ValueType , class DeviceDestination ,

class DeviceSource >
void deep_copy(
const MDArrayView<ValueType,DeviceDestination> & ,
const MDArrayView<ValueType,DeviceSource> &);

}

Figure 1. The Kokkos multidimensional array API composes a member
data type, multi-index space, multi-index map to device memory, and view
semantics.

A. View and Shared Ownership Semantics

The MDArrayView C++ class API (Figure ??) is a mul-
tidimensional array view to member data on the manycore
device. In view semantics there may exist multiple views to
the same member data such that all views share ownership
of that member data. Multiple views to the same member
data are created via the copy constructor and assignment
operator; these functions perform “shallow” copies of the
input view. This in contrast to container semantics where
a container exclusively owns its member data and the copy
constructor and assignment operator perform a “deep” copy
by allocating new member data and copying all members of
the input container.

In large complex application codes arrays are allocated
on the compute device by “driver” functions, passed among
driver functions, passed from driver functions to compu-
tational kernels, passed from one computational kernel to
another, and eventually deallocated to reclaim memory on
the compute device. Managing the complexity of numerous
references to many allocated arrays requires a high degree
of software design and implementation discipline to prevent
memory management errors of (1) deallocation of a still used
array or (2) neglecting to deallocate an array no longer in
use. Thus there is a significant risk that a team of application
developers will loose track of when to, or not to, deallocate
a multidimensional array, and as a result will introduce
one of the two memory management errors. This risk is
mitigated by using view or shared ownership semantics (e.g.,
see shared_ptr in [3]) for allocated Kokkos arrays. Under
the shared ownership semantics multiple view to the same
allocated data may exist and the last view to be cleared (see
Figure ??) deallocates the allocated data.

B. Device versus Host Allocated Data

The create_mdarray function is called by the appli-
cation on the host process to allocate array member data in
the memory space of a designated device. The DeviceType
may be a manycore device (e.g., NVIDIA R© device) or the
host “device”; i.e., the host process running the application
code. Views to allocated member data will exist on both the
host process and within kernels running on the manycore
device. However, ember data allocated on one device may
not be directly accessible to another device; e.g., data allo-
cated on the host is not directly accessible to an NVIDIA R©
device and vice-versa.

Kokkos API functions in Figure 1 are designated as avail-
able only on the device (DEVICE_FUNCTION), available on
both the device and host (DEVICE_AND_HOST_FUNCTION),
or available only on the host (no macro designation).
Functions which describe the shape of an array (rank and
dimensions) are available on both the device and host.
However, functions which provide access to member data
are only available on the device.

The deep_copy function is called on the host process
to copy array member data between arrays allocated on
the manycore device and host. These arrays must have
conformal multi-index spaces; i.e., their rank and dimensions
must be equal. However, the source and destination arrays
may have different maps from the conformal multi-index
space to the data members. Thus the deep_copy both
copies member data between memory spaces and potentially
permutes member data through the composition of the two
array’s multi-index space maps.

C. Illustrative Test Function
Array creation, view “shallow” copy, and “deep” copy

semantics are illustrated in Figure 2. In this illustrative test
function an array’s member data is filled on the host, copied
to the device, copied between arrays on the device, and then
copied back to a different array on the host. As an illustration
of view semantics the view host_z is assigned to also view
the array allocated for view host_y. When view host_y

is destroyed the member data originally allocated for it is
not deallocated because the host_z view to that data still
exists.

template< class Device >
void illustrative_test_function(size_t N)
{
typedef Kokkos::DeviceHost Host ;
MDArrayView<double,Host> host_z ;
MDArrayView<double,Device> dev_z ;
{
MDArrayView<double,Host> host_x , host_y ;
MDArrayView<double,Device> dev_x ;

host_x = create_mdarray<double,Host>(N, 10, 20);
host_y = create_mdarray<double,Host>(N, 10, 20);
dev_x = create_mdarray<double,Device>(N, 10, 20);
dev_z = create_mdarray<double,Device>(N, 10, 20);
host_z = host_y ; // View the same allocate data

fill(host_x); // Fill ’host_x’ with test data ...
deep_copy(dev_x, host_x);// Copy device <- host
deep_copy(dev_y, dev_x); // Copy device <- device
deep_copy(host_y, dev_z);// Copy host <- device

verify_equal_member_data(host_x , host_z);
} // deallocation of host_x and dev_x data

// data originally allocated for ’host_y’ still exists
// because this data is still viewed by ’host_z’

}

Figure 2. Illustrative test case for creating, “shallow” copying, and “deep”
copying Kokkos arrays between the host and manycore device.

IV. COMPUTATIONAL KERNEL FUNCTOR API
Computational kernels conform to functor semantics and

APIs for either parallel_for or parallel_reduce op-
erations. A functor is the composition of a computation and
the data, or views of data, to which the computation is
applied (recall Definitions 6 and 7). Functor semantics are to
many programming models; for example, the C++ Standard
Template Library (STL) algorithms [4], Intel Threading
Building Blocks [5], and Thrust [2] use functors.

In the Trilinos-Kokkos programming model a functor
is created on the host process, copied to the device for
execution, and then run thread-parallel on the device. In
the multidimensional array API a parallel_for func-
tor must identify a target manycore device and provide
a computational function, as illustrated in Figure 3. API
requirements for a parallel_reduce functor are more
involved to support the thread-parallel reduction operation
fΘ in Definition 7.

template< typename ValueType , class Device >
class ExampleFunctor {
public:
typedef Device device_type ; // Required

// Average values from rank-3 array X into
// the corresponding values of rank-2 array Y
const MDArrayView<ValueType,Device> X ;
const MDArrayView<ValueType,Device> Y ;
int n1 , n2 ;

ExampleFunctor(
const MDArrayView<ValueType,Device> & arg_x ,
const MDArrayView<ValueType,Device> & arg_y)

: X(arg_x), Y(arg_y) // view shallow copy
, n1(X.dimension(1)) , n2(X.dimension(2)){}

KOKKOS_MACRO_DEVICE_FUNCTION
void operator()(int iP) const // Required
{
for (int i = 0 ; i < n1 ; ++i) {
ValueType tmp = 0 ;
for (int j = 0 ; j < n2 ; ++j) {
tmp += X(iP,i,j);

}
Y(iP,i) = tmp / n2 ;

}
}

};
// Run this functor on the manycore device:
// parallel_for(nP , ExampleFunctor(myX,myY));
// which calls operator() nP times in parallel
// with iP = 0..nP-1

Figure 3. An example parallel_for kernel that averages terms from
a rank-3 array into the corresponding terms of a rank-2 array.

The example functor in Figure 3 has the device as
a template parameter. A functor must be templated with
respect to the device and use the DEVICE_FUNCTION macro
for the functor to be compile-time portable to multiple
devices. When the functor template is instantiated with a
device the internal array views are also instantiated with the
device. This compile-time instantiation of the array views
causes a device-specific multi-index → data member map
to be compiled into the functor, resulting in an optimal
memory access pattern by the operator()(int iP)

computation.
For thread-safe parallel execution the functor’s

operator()(int iP) computation (1) must only
access the data members of the input and output arrays
associated with the parallel work index iP and (2) do
not assume a particular map from multi-indices to data
members. For well-performing execution the computation
should only access each data member of an array exactly

once. In the example functor a temporary variable is used to
accumulate the X(iP,i,*) values so that the corresponding
Y(iP,i) data member is updated exactly once. This “access
only once” principle is used due to the large global memory
access times of some manycore devices (e.g., NVIDIA R©
), and the small overhead associated with the multi-index
map operation.

A. Reduction Functors

The functor API requirements for a reduction computa-
tional kernel (i.e., no reduction) are illustrated in Figure 4.
The type definitions are required for the parallel_for

driver to select and compatibly run the functor on the
compute device. The work function is implemented by
the functor’s parenthesis operator. This function is called
work_count() times where each call is given a unique
work index value in the range [0..(work_count()-1)].
The work operator is expected to access appropriate parallel
partitioned data members of the input and output arrays; i.e.,
X(*,*,iwork) and Y(*,*,*,iwork).

API requirements for a parallel_reduce kernel in-
clude the device and computation operator similar to the
parallel_for API requirements. In addition the reduction
computation fΘ API is defined by (1) the value_type

of the values to be accumulated, (2) a join function that
reduces values accumulated by two different threads into a
single value, and (3) an init function that initializes a value
prior to beginning accumulation. The parallel_reduce

operation creates and manages a value_type accumulation
value for each thread. As such the value_type must be a
simple “plain old data” type; i.e., a raw memory copy of
value_type values yields the correct copy-result. These
values are initialized with the init function and reduced
with the join function. The arguments of the join function
are qualified with volatile to prevent the compiler from
introducing thread-unsafe optimizations within the minimal-
overhead inter-thread reduction operations.

V. PERFORMANCE OF INITIAL IMPLEMENTATION

Performance-portability of the initial implementation is
evaluated through two test cases. These performance-
evaluation test cases will be used to analyze and im-
prove the runtime performance of the programming model,
and the usability of the API. The first case applies the
parallel_for to a kernel which computes the gradients
of a linear hexahedral finite element’s basis functions. Each
work unit loads an element’s eight vertex coordinates from
global memory (24 values), performs 231 floating point
operations, and writes the eight basis function gradients
to global memory (24 values). The coordinate and basis
function gradients data are managed in rank-three arrays
with dimensions of number of elements, spatial dimension,
and number of vertices (or linear basis functions) per

template< class Device >
class ExampleReduce {
public:
typedef Device device_type ;
typedef struct { double total[4] ; } value_type ;

MDArrayView<double,device_type> mass ;
MDArrayView<double,device_type> coord ;

// Functor-specific constructor copies views
ExampleReduce(
const MDArrayView<double,device_type> & arg_mass ,
const MDArrayView<double,device_type> & arg_coord ,

: mass(arg_mass), coord(arg_coord) {}

KOKKOS_MACRO_DEVICE_FUNCTION
void operator()(int iP , value_type & update) const
{
const double m = mass(iP);
update.total[0] += m * coord(iP,0);
update.total[1] += m * coord(iP,1);
update.total[2] += m * coord(iP,2);
update.total[3] += m ;

}

// update = ReduceOperation(update , input)
KOKKOS_MACRO_DEVICE_FUNCTION
static void join(volatile value_type & update ,

volatile const value_type & input)
{
update.total[0] += input.total[0];
update.total[1] += input.total[1];
update.total[2] += input.total[2];
update.total[3] += input.total[3];

}

// output = ReduceOperatorIdentity
KOKKOS_MACRO_DEVICE_FUNCTION
static void init(value_type & output)
{
update.total[0] = 0 ;
update.total[1] = 0 ;
update.total[2] = 0 ;
update.total[3] = 0 ;

}
};
// Run this functor on the manycore device:
// parallel_reduce(nP, ExampleReduce(mass,coord));
// which calls operator() nP times in parallel
// with iP = 0..nP-1

Figure 4. An example parallel_reduce kernel that accumulates
mass-weighted coordinates for a center-of-mass computation.

element. The second case implements a Modified Gram-
Schmidt orthogonalization algorithm through a sequence
of parallel_for and parallel_reduce operations on
simple “level one” basic linear algebra operations (i.e.;
vector scaling, addition, and inner products). In this test case
the orthogonalization algorithm is applied to a multivector
of dimension N×32.

The two test cases are implemented with the portable
multidimensional array programming model and API. These
test cases are instantiated for double precision data and
computations, and run on the following multicore / manycore
devices.

NVIDIA Tesla C2070 448 cores
Intel Xeon X5680 2 sockets × 6 cores
AMD Opteron 6172 2 sockets × 12 cores

For the Xeon and Opteron devices a range of Pthread counts
were run and results obtained from the best performing
Pthread counts are presented in Figure 5 and Figure 6.

0.2

2.0

20.0

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

D
o

u
b

le
 P

re
ci

si
o

n
 G

ig
af

lo
p

s

Number of Hexahedral Elements

Performance of Hexadral Gradient Kernel:
Double Precision Gigaflops versus Element Count

NVIDIA via hand-written CUDA NVIDIA via Array API

Xeon using 12 Pthreads Opteron using 24 Pthreads

Figure 5. Initial performance results for linear hexadral basis function
gradient computational kernel using the multidimensional array API

0.1

1.0

10.0

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

D
o

u
b

le
 P

re
ci

si
o

n
 G

ig
af

lo
p

s

Multivector Length (for 32 Vectors)

Performance of Modified Gram-Schmidt:
Double Precision Gigaflops versus
Multivector Length (of 32 Vectors)

NVIDIA via hand-written CUDA NVIDIA via Array API

Xeon using 12 Pthreads Opteron using 24 Pthreads

Figure 6. Initial performance results for Modified Gram Schmidt factor-
ization sequencing simple vector kernels using the multidimensional array
API

In addition to the three multicore / manycore device
test cases, “native” CUDA versions of these test cases are
implemented and run on the NVIDIA device. These hand-
written CUDA test cases are used to compare performance

and usability with the portable array API versions. For the
hexahedral gradient test case performance of the array-API
version, for a large number of elements, is within 20% of
the hand-written CUDA versions (Figure 5). A significant
difference between the array-API and hand-written version
is that the hand-written version eliminates all multi-index
mapping calculations by leveraging a priori coding-time
knowledge of array dimensions (N, 3, 8) and NVIDIA co-
alesced memory access strides. In contrast the multi-index
mapping of the array-API version use runtime knowledge
of array dimensions, and selects the mapping computation
at compile-time.

Performance differences between the array-API version
and hand-written CUDA versions of the Modified Gram-
Schmidt test case are small (Figure 6). This result is expected
as the test case does not use a multi-index map calculation
when indexing into the multivectors. Performances differ-
ences for smaller multivector lengths (e.g., 1E3 to 1e5) are
due to differences in the GPGPU reduction algorithms.

These initial results demonstrate the performance-
feasibility of the Kokkos portable multidimensional array
programming model; especially for an NVIDIA GPGPU
device where improper memory access patterns (i.e., non-
coalesced memory access) will dramatically degrade perfor-
mance.

VI. RESEARCH & DEVELOPMENT IN PROGRESS

The Trilinos-Kokkos multidimensional array program-
ming model and API provides a “classical” look-and-feel
for computational kernels to use multidimensional arrays
on multicore and manycore devices. Memory management
within this programming model and API is non-traditional
shared-ownership views semantics, as opposed to exclusive-
ownership container semantics. View semantics are exclu-
sively used to simplify the programming model and API,
and mitigate risks of memory management errors.

The Trilinos-Kokkos multidimensional array program-
ming model, API, and implementation is in its first year
of research & development (R&D). Current R&D activities
are focused on (1) investigating and improving performance
for the current multicore and manycore devices and (2)
demonstrating usability through more complex computa-
tional kernels and use within mini-applications. Anticipated
R&D activities include (1) new device implementations
such as the Intel Knights Ferry, (2) integration of multiple
heterogeneous kernels within a single concurrent parallel for
or parallel reduce operation, (3) integration into applications
and libraries to support performance-portable multicore and
manycore parallelism.

Trilinos-Kokkos is available in the public domain at
http://trilinos.sandia.gov.

ACKNOWLEDGMENT

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United

States Department of Energy under contract DE-AC04-
94AL85000.

REFERENCES

[1] “NVIDIA CUDA home page,”
http://www.nvidia.com/object/cuda home.html, Feb. 2011.

[2] “Thrust home page,” http://code.google.com/p/thrust/, May
2011.

[3] “Draft Technical Report on C++ Library Extensions,”
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf,
Jun. 2005.

[4] Information Technology Industry Council, Programming Lan-
guages — C++, International Standard ISO/IEC 14882, 1st ed.
11 West 42nd Street, New York, New York 10036: American
National Standards Institute, 1998.

[5] J. Reinders, Intel Threading Building Blocks. O’Reilly, Jul.
2007.

