SAND2011-3980C

Monarch: A High-Assurance Java-to-java (J2j) Source-code Migrator*

Victor L. Winter, Jonathan Guerrero, Carl Reinke

University of Nebraska at Omaha

Department of Computer Science

{vwinter, creinke, jguerrero} @mail.unomaha.edu

Abstract

JVM-based processors used in embedded systems are of-
ten scaled back versions of the standard JVM which do not
support the full set of Java bytecodes and native methods
assumed by a JVM. As a result, code bases such as Java li-
braries must be migrated in order make them suitable for ex-
ecution on the embedded JVM-based processor. This paper
describes Monarch, a high-assurance Java-to-java (J2j)
source code migrator that we are developing to assist such
code migrations.

1 Introduction

At Sandia National Laboratories, a hardware implemen-
tation of the JVM [4] is being designed for use in resource-
constrained embedded applications. This implementation
has capabilities similar to the Java Card. Sandia Engineers
have determined that the creation of applications for their
platform would be significantly facilitated if a suitable sub-
set of the libraries in the Java Standard Edition (SE) API
could be made available to their embedded systems devel-
opers. This has given rise to a funded project whose goal is
to develop the capability of migrating Java code (e.g., select
Java libraries) to Java-based platforms in a highly reliable
manner!.

1.1 Process Automation

Software migration based on a purely manual process is
typically an extremely labor intensive endeavor. As a re-

*This work was in part supported by the United States Department of
Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy.

11t should be noted, that the computational restrictions being consid-
ered are fairly representative of resource-constrained JVM’s in general.
Thus, the Java-to-java migration capability being developed can be used to
target a variety of resource-constrained JVM’s.

James T. Perry
Sandia National Laboratories
Surety Electronics & Software
Department 2144
Jtperr@sandia.gov

sult, it is often cost effective to develop tools that (at least
partially) automate the migration process. In this context,
it is also worth noting that software migration is a process
which typically cannot be fully automated [6]. In practice,
this concession provides the justification for the develop-
ment of tools which either automate only a portion of what
can be automated or which provide approximations to what
can be automated.

On the subject of automation it has been argued that a
tool capable of automatically achieving a 75% migration
rate produces significant cost savings over a purely manual
approach [1]. However, it will also then generally be the
case that the core complexity of the migration process will
be found in the software pool encompassing the remain-
ing 25%. There are two primary reasons for this pooling
phenomenon: economic and theoretical. Economic forces
provide an incentive for expanding tool capabilities until a
point of diminishing return is reached; at which time tool
development may slow dramatically or even stop. In con-
trast, theoretical forces provide hard limits to what can be
achieved.

When high-assurance (and not economics) is the primary
driver behind the implementation of tools supporting pro-
cess automation, then automation should leveraged to the
fullest extent theoretically possible. Instead of settling for
achieving 75% of what could be automated one must strive
for achieving 100% of what can be automated. It should
also be noted that some goals within a process may not be
fully automatable due to theoretical limitations. Therefore,
when we say “100% automation”, we are talking about fully
automating that portion of a process that can be automated.

1.2 The 99/1 Pooling Phenomena

As automation approaches 100%, tool capabilities are
expanded to handle operational profiles of the problem
space that rarely occur. Generally speaking, these spaces
(what we are metaphorically calling pools) are poorly un-
derstood. In practice, it is here where a considerable por-

tion of the challenges to high-assurance tool development
are encountered. For example, our effort in developing a
J2j source-code migration tool has led to exploration of cor-
ner cases of what is technically possible within the Java
language. This exploration has led to the discovery of le-
gal Java code revealing bugs [10] in the static analysis and
refactoring functions of Eclipse, Netbeans, and IntelliJ.

In a variety of fields of study the pooling phenomenon
associated with a particular attribute, such as complexity,
is referred to in broad terms as the Pareto Principle? other-
wise known as the 80/20 rule. However, our experiences
with high-assurance tool development suggest that 80/20
is a misleading characterization of this phenomenon. We
think that for complex high-tech systems a better quantifi-
cation would be something like 99/1. Evidence consistent
with this quantification has also been presented by others.
On October 2, 2002 Microsoft CEO Steve Ballmer wrote a
3-page memo which contained the following:

“One really exciting thing we learned is how,
among all the software bugs involved in reports, a
relatively small proportion causes most of the er-
rors. About 20 percent of the bugs cause 80 per-
cent of all errors, and-this is stunning to me-one
percent of bugs cause half of all errors.”[2]

The significance and challenges that the 99/1 pooling
phenomenon poses to the construction of high-assurance
tools should not be underestimated. Initial prototypes may
implement algorithms that correctly handle large portions
of the problem space, but which can break in fundamental
ways when an attempt is made to extend these algorithms
to the entire problem space. This poses a hard-to-quantify
risk to software engineering approaches based on incremen-
tal development. Specifically, incremental development can
exhibit a non-linear behavior: in the sense that the level of
effort required to achieve the next increment is not linearly
related to the size of the increment. In other words, cor-
rectly implementing the next small increment can require
an unexpectedly large amount of effort - perhaps even trig-
gering a fundamental re-design of the tool. A lesser such
tipping point is encountered at the 75-80 percentile range as
was mentioned a the beginning of this section.

1.3 Contribution

This paper describes a novel approach and infrastructure
for Java-to-java (J2j) source code migration, an area in the
field of migration in which little to no work has been done.
Related work has typically centered around J2X or X2J mi-
grations where X is some language other than Java (e.g.,

2In 1906 the Italian economist Vilfredo Pareto observed that 80% of
the land in Italy was owned by 20% of the population[8].

C/C++ or .NET). Assumptions upon which our J2j migra-
tion is predicated imply that deletion of code plays a cen-
tral role in J2j migration. Deletion requires analysis that
is fundamentally different from translation-based analysis.
In particular, we are not aware of any tool capable of per-
forming the kind of dependency analysis necessary to safely
justify deletion.

Our J2j migrator integrates transformation-based pro-
gramming and function-based programming within a
framework called the 7L System. Complimenting this is
Bascinet, a GUI developed in Java, providing system-level
support for both developing our migrator and for then mi-
grating Java libraries (e.g., Java code bases residing within
folder hierarchies). Comprehension of source code is sup-
ported by several tools and artifacts including a special-
purpose plugin written for Cytoscape. The resulting J2j
source-to-source migration tool is called Monarch.

The remainder of the paper is as follows: Section 2
overviews related work. Section 3 summarizes the restric-
tions of the family of processors we are targeting. Section
4 describes J2j migration and its goals. Section 5 gives
an overview of how Monarch approaches J2j migration
as well as some of the challenges encountered. Section 6
describes the infrastructure upon which Monarch is built.
And Section 7 concludes.

2 Related Work

It has been recognized that language conversion/migra-
tion is a hard and risky endeavor [11]. In [11], the authors
mention they have first hand knowledge of companies that
have gone bankrupt as a result of underestimating the diffi-
culty of language migration.

In the literature, a variety of code migration projects
have been reported. These migration efforts have spanned a
wide spectrum of languages including: Smalltalk to C [15],
C/C++ to Java [5][6][12], Java to C#/.NET [9], PL/I to C++
[3], and Cobol to Visual Basic [11]. The motivation be-
hind such migrations center around issues such as (1) re-
engineering and evolution of legacy systems, (2) efficiency,
(3) integration with other technologies, and (4) corporate-
level decisions to shift technologies. The migration tools
that have been developed typically have caveats limiting ei-
ther their generality, safety/reliability, or level of automated
support they provide.

Of the migrations listed in the previous paragraph, the
C/C++ to Java migrations are the most closely related to
our migration efforts. A fairly comprehensive discussion of
approaches to C/C++ to Java migration can be found in [6].
In essence, C/C++ code can be executed on a JVM in one
of three ways: (1) as native methods that extend the JVM,
(2) as compiled byte codes which are then executed by the
JVM, or (3) as translated (C to Java) source code which

can then be compiled using a standard Java compiler. The
first approach utilizes the Java Native Interface (JNI) to pro-
vide the mechanism for transferring data to-and-from native
methods and methods residing within class files. In this ap-
proach, C-based computations are executed outside of the
JVM. This circumvention of the JVM introduces a secu-
rity risk which may be unacceptable in high-consequence
applications. In the second approach C code is compiled
into byte code which can then be executed on the JVM.
The Java Backend for GCC is a migrator that takes this ap-
proach. Conceptually, the migration uses a single Java array
to hold the variables in the C program. A negative conse-
quence of this is that this structure circumvents Java’s type
safety which again may introduce an unacceptable risk for
high-consequence applications.

A migration strategy based on source-code level trans-
formation of C/C++ to Java is taken by a number of tools
including: Ephedra [5], C2J++ [12], and Novosoft C2J.
Of these, Ephedra appears to be the most comprehensive,
though migration is also not fully automated. In general,
issues that make C/C++ to Java migration hard include: (1)
pointers, (2) memory management, (3) call-by-reference vs
call-by-value parameter passing, (4) datatype conversions,
and (5) goto statements.

Regardless of which level of abstraction one selects for
migration, the resulting code and/or associated interfaces
make code review by an IV&V team difficult. In the high-
consequence arena this would then require other mecha-
nisms to be used to provide high assurance in the proper
functioning of migration tools as well as the results of indi-
vidual migrations.

3 Software Development for Restricted
JVM-based Platforms

From the perspective of process, developing code for the
processor we are targeting is essentially identical to devel-
oping code for the JVM. Programmers can develop and de-
bug programs on a desktop using an IDE such as Eclipse or
Netbeans. Tools such as unit testers can be used to validate
aspects of the software.

From the perspective of the Java language, software de-
veloped for a restricted processor may only contain features
supported by the processor. A typical list of features that
are not supported by restricted processors is shown in Table
1. It should be noted that the use of native methods within
a restricted processor is also limited. These feature restric-
tions and native method limitations extend to the entire code
base of an embedded application, including any elements
imported from standard Java libraries (e.g., java.lang).
For example, the Reflection API is generally not available
to the developer in part due to its native method dependen-
cies. A somewhat different restriction applies to the method

Java Language Restrictions

Feature Relevant Status
Keywords

floating point strictfp, float, | unsupported
double unsupported

threading synchronized | unsupported
volatile unsupported

serialization transient unsupported

assertions assert unsupported

multi-dimensional arrays unsupported

VM Restrictions

Feature Relevant Status
Keywords

native methods native limited support

garbage collection limited support

reflection unsupported

(dynamic) class loading unsupported

Table 1. A typical list of Java features not sup-
ported by restricted platforms.

finalize (), used in the context of garbage collection,
which is available to the Java programmer on a standard
JVM. In particular, standard garbage collection is often-
times not available within an embedded system.

4 An Overview of the J2j Migration Problem

Informally stated, the goal of J2j migration is to trans-
form, at the source-code level, a code base such as a class
library into a semantically equivalent form that has the ad-
ditional property that it is also executable on a targeted plat-
form. Ideally, the migrated and un-migrated versions of a
code base would be indistinguishable to the user of the code
base. Unfortunately, indistinguishability is a “tall order”
and is generally not achievable in practice due to a variety
of constraints (e.g., time and space) placed on embedded
processors. As a result, concessions must be made. In par-
ticular, users must decide in which cases to accept reduced
functionality (e.g., fewer methods) and when to accept al-
tered functionality. Furthermore, these decisions must be
made in the context of a larger system design where the
properties of a migrated code base must be transparent to
the design and development team. The description in Fig-
ure 1 provides a more formal statement of the J2j migration
problem.

There are two types of mechanisms that must be con-
sidered in the context of J2j migration: removal and re-

1. Given:

(a) aset of elements constituting a code base:

C=A{c1,ca,...,cn}
(b) a set of unsupported elements
U= {ul,u2,...,uk}

2. Develop a code base C” such that:

(a) C” maximally preserves the code base of C

(b) C” has no dependencies on U

Figure 1. Statement of the J2j migration prob-
lem

implementation. Removal(-based migration) entails strict
deletion of code that is not supported by the targeted plat-
form. In contrast, re-implementation(-based migration)
adapts code by replacing unsupported code fragments with
equivalent (or near-equivalent) code fragments expressed in
terms of computations supported by the targeted platform.
It should be noted that in a practical setting, a straightfor-
ward re-implementation is not always possible.

From the perspective of computability, removal and
re-implementation are distinct. Removal is algorithmic
and as a result lends itself to automation. On the other
hand, re-implementation in its full generality is non-
algorithmic and thus cannot be fully automated. Re-
implementation requires a human-in-the-loop. Because of
this, re-implementation has an error-prone dimension to it
centering around the manual development of (new) code.
Thus, re-implementation can entail a potentially unaccept-
able risk of introducing bugs into the migrated code base
(and ultimately the embedded system design).

Aside 1 With respect to the assurance argument it is im-
portant to note that the Java Base Libraries, which are the
target of our migration efforts, typically undergo a signif-
icant number of tests before their official release by Sun.
These libraries are also subjected to a maturation process
based on bug feedback from a large group consisting of mil-
lions of users. In contrast, re-implemented components of
libraries used in embedded applications (especially one-of-
a-kind embedded applications) will not be subjected to the
maturation process associated with a large user base. Thus,
caution should be exercised when making decisions to re-
implement portions of a library.

From the perspective of assurance, library migration
based on removal is more attractive than migration based
on re-implementation. In theory, removal can be precisely
defined as a relation between unsupported computational

elements and code fragments. In practice, it is the calcula-
tion of this relation and its transitive closure that gives rise
to the complexity of removal-based migration.

4.1 Goals

Our J2j migration project has the following goals:

e Correctness. To produce migrated code that is correct
with respect to the original code.

e IV&V. The code should be migrated in such a manner
that migration can easily be subjected to IV&V.

e Human Involvement. Migration should be automated
to the extent possible. However, the overall migration
process should allow for human involvement such as
the manual re-implementation of critical portions of a
code base.

e Repeatability. The complete migration, including the
substitution of manually developed code, should be re-
playable in a fully automatic manner.

e Reuse. Migration of a code-base (such as a Java li-
brary) may need to be repeated as new versions of the
code-base are released. In this case, there should be
support for reusing the re-implementations developed
for the previous migration.

5 The Monarch Migrator

Previously, we had developed a lightweight code mi-
gration tool implemented within a transformation system
called HATS [13]. We considered our tool lightweight be-
cause dependency analysis it performed was not semantics-
based. Instead, a simple syntactic matching algorithm
was used to approximate dependency analysis. Interest-
ingly enough, this approach yielded fairly good results [14].
Using this migrator we were able to automate a signifi-
cant portion of what could be automated during the mi-
gration process. For example, our lightweight migrator
achieved approximately a 91% coverage when applied to
the java.util library. From an economic standpoint this
could be considered a success.

Our current goal is to enhance this general approach to
migration, producing a tool in which the automatable por-
tion of migration is fully realized (i.e., automated at 100%).
This new migration tool is called Monarch®. Two major
differences between the current and previous approach is
that in the current approach we (1) no longer approximate

3Butterflies are the archetype of transformation. Monarch butterflies
are known for their migratory prowess, traveling roughly 2500 miles dur-
ing their migration.

dependency analysis, and (2) our transformation tool has
been completely redesigned.

As shown in Figure 4, Monarch migration consists
of two primary phases: replacement and removal. The
replacement phase is manual and focuses on the re-
implementation of code that in its original form has a de-
pendency on an unsupported feature. In contrast, the re-
moval phase is fully automatic and removes Java elements
having dependencies on unsupported features. We define a
Java element as a (1) field, (2) method, (3) constructor, or
(4) initialization block.

5.1 The Replacement Phase

The replacement phase begins with an inspection of the
code in order determine the dependencies of its elements.
A variety of tools and artifacts are being developed in or-
der to facilitate comprehension of the dependencies within
the targeted code base. Numerous metrics can be collected
and displayed in symbolic form. For a targeted code base,
examples of metrics include, but are not limited to:

e The total source lines of code.

e The total number of classes, fields, methods, and con-
structors.

e The total number of initialization blocks and their lo-
cation within the source code.

e The total number of occurrences of the new keyword
within a constructor.

e The total number of single-type imports.
e The total number of static single-type imports.
e The total number of anonymous classes.

e The total number of class declarations occurring
within a method or constructor. For example, the Stan-
dard Basis library consists of 257,163 lines of code,
contains no class declarations within a constructor, and
contains only one class declaration within a method.

Monarch also employs graphical representations of
data. In particular, we are employing GraphViz and Cy-
toscape to help visualize element dependencies and subtype
relationships within the code. We have developed a Java
plugin for Cytoscape supporting a number of views on a
targeted code base, including:

e Standard View: This view shows all the types in the
code base, their members, and various dependencies
among these entities. Color coding is used to visually

distinguish both unsupported entities (e.g., the prim-
itive type double) and external entities (i.e., enti-
ties lying outside of the (targeted) code base). Color
coding is also used to identify unsupported dependen-
cies (dependencies on unsupported entities) as well as
external dependencies (dependencies on external enti-
ties).

e Inheritance View: This view shows the inheritance
structure (i.e., both extends and implements) of
all types in the code base. Shapes are used to distin-
guish class, interface, and enumerated types.

e Structure View: This view show inheritance as well
as class membership. Data dependencies are not
shown, but color coding is used to identify members
having dependencies on unsupported entities.

e Unsupported/External View: This view shows only
the portion of the code base having unsupported or ex-
ternal dependencies.

Figures 2 - 3 shows each of the four views described for
a targeted code base centering on java.lang.

After an initial code inspection, an exploratory removal-
based migration can be performed. This migration is fully
automatic and typically ends up removing too much of the
targeted code base.

Example. Every constructor of the class Throwable
has a dependency on a native method called
fillInStackTrace. If this native method is not
supported on the platform being targeted, then unsupported
dependencies will extend to all Exception and Error
classes. In turn, all methods or constructors that throw
exceptions will also have unsupported dependencies. As a
result, removal-based migration will yield a code base that
is near empty.

The goal of the replacement phase is to manually re-
implement code in order to remove unwanted dependen-
cies from “must have” portions of the target code base.
These re-implementations are then recorded as transforma-

. lac
tions ———5 which can then be (automatically) applied prior
to removal-based migration.

C replace C,
5.2 The Removal Phase: ¢’ =22, ¢”

In Monarch, the removal phase is fully automated. In
this phase, fields, methods, and constructors having external
or unsupported dependencies are removed. As was men-
tioned in Section 1.3, removal comes with its own set of
challenges. This section discusses some of the challenges to

Figure 2. Standard and Structural Views

I PR e

N I
/\xﬁ/\/ v

==

e T T T

1ITTT

anua
Evaluation

ode Analysis
and Redesign

_ '/

Monarch

Removal

Figure 4. Monarch

performing dependency analysis in the context of removal.
In particular, removal can have far reaching consequences.

5.2.1 Resolution Complexity

Resolution is a relation between references and declara-
tions. Java’s resolution algorithm is extremely complex and
encompasses a substantial number of special cases. It is be-
yond the scope of this article to give a detailed discussion on
this topic. Nevertheless, we would like to give one example
highlighting our claim. Figure 5 shows a Java code frag-
ment in which there are multiple declarations of the class
C2. Within the inner class B2, a reference to C2 is made. In
this case, the canonical form of C2 is extra.C2. That is,
the reference C2 resolves to extra.C2. It is worth noting
that the private inner class C1.D1 declared in B1 is visible
from within B2, but the private inner class C2 declared in
B1 is not visible from within B2.

package p;
import extra.C2;

public class A {
class Bl {
class C1 {
private class D1 {}
}
private class C2 {}
}
class B2 extends Bl {
Cl1.D1 x0;
C2 x1; // canonical form of C2 is extra.C2

package extra

public class C2 {}

Figure 5. An example of a complex resolution.

5.2.2 Dependency Analysis Challenges Posed by Up-
casting

Upcasting can obfuscate dependency analysis, which can be
extremely dangerous within the context of removal. Con-
sider the following expression involving the conditional cre-
ation of an object followed by a call to the method foo on
the created object.

(x <y:newAl() : newA2()).foo()

In a code fragment such as this, it is possible for the
method foo to have overriding declarations in both A1 and

A2. In this case, dependency analysis must capture the set
of possible methods being referred to.

5.2.3 Dependency Analysis Challenges Posed by Over-
riding

Consider a class hierarchy in which every subclass in the
hierarchy has an overriding declaration for a particular field
x. Furthermore, suppose that lowest subclass Z in this hi-
erarchy is an inner class whose enclosing class also has a
declaration for the field x. Lastly, suppose that the field x is
also statically imported into the compilation unit in which
the lowest subclass Z resides. In this case, the removal of
the field x from the body of the class Z will change the func-
tionality of the code. To prevent this, all secondary resolu-
tion possibilities must be prohibited! A discussion of how
this can be done lies beyond the scope of this paper.

6 Infrastructure

Monarch is implemented within the TL System and
Bascinet.

6.1 The TL System

TL is a special-purpose language we have developed for
expressing transformation-based computation. TL is tightly
integrated with the functional language SML. This provides
a context for expressing computation in a hybrid fashion
spanning transformation-based programming and function-
based programming. It is in this programming landscape
that Monarch is being developed.

The TL System includes a (1) GLR parser for translat-
ing plain text (e.g., ascii representations of programs) into
terms, (2) a TL interpreter implemented in SML for rewrit-
ing terms, and (3) a powerful pretty-printer that can be used
to translate terms into a variety of representations such as
plain text documents and HTML documents.

The terms that TL transforms are parse trees. These
terms contain hidden information describing their point of
origin. This information includes the name of the file and
the row and column number in the file. Point-of-origin in-
formation can be extremely useful for tracing information
within a transformation. In the context of code migration,
point-of-origin information can be queried to determine the
source code location of fields, methods, and constructors
having unsupported dependencies. Point-of-origin informa-
tion can also be used to calculate the number of lines in a
(plain text) file.

The TL System can be executed from the command line
and runs on both the Windows and Unix operating systems.

6.2 Bascinet

Bascinet is a GUI, inspired by the HATS GUI (its prede-
cessor), that is written in Java and provides support for the
development and execution of TL applications. Conceptu-
ally speaking, “Bascinet is to TL” as “Eclipse is to Java”.

Bascinet and the TL System are integrated in a manner
that seamlessly supports the application of transformations
(i.e., TL programs) to file hierarchies. A developer simply
selects the transformation they want to apply together with
the file or file hierarchy to which the selected transformation
should be applied.

Bascinet supports two distinct application modes: (1) a
discrete mode application in which the selected transfor-
mation is applied in a repetitive manner to each file in a file
hierarchy, and (2) a continuous mode application in which
the selected transformation is applied a single time to the
entire contents of a file hierarchy.

Continuous mode application is very useful when the en-
tity to be transformed has been distributed across a num-
ber of files. For example, using this application mode it is
straightforward to develop transformations for gathering a
wide variety of metrics over a Java code base.

Bascinet allows the developer to control to which file
extensions (e.g., dot-java) a transformation should be ap-
plied. From a practical standpoint, this is an important fea-
ture when applying a transformation to a folder hierarchy
consisting of hundreds of folders and thousands of files.
For example, Java libraries occasionally contain files hav-
ing extensions other than the dot-java extension. Applying
a Java-oriented transformation to a non-Java file will result
in failure. The ability to exercise extension-based control
over transformation application permits transformations to
be applied directly to Eclipse workspaces. For example, mi-
grator test suites can be developed in Eclipse and then val-
idated in Monarch without any modification to the folders
generated by Eclipse.

7 Summary and Conclusion

When developing applications for restricted JVMs it is
beneficial to leverage the functionality provided by standard
Java libraries. In order to make this possible, a Java-to-
java (J2j) migration is required. Resource constraints on
embedded processors can prohibit exotic migrations such as
datatype emulation. Thus, J2j migration includes removal
as well as re-implementation of code. The analysis needed
to determine what must be removed is automatable and is
highly complex.

Monarch is a J2j migrator being developed within the
TL system in which: (1) re-implementation is assisted by
visual code representations such as the views we have de-
veloped within Cytoscape, and (2) the removal phase of mi-

gration is fully automated and is based on a complete de-
pendency analysis. Re-implementations are encapsulated
as transformations and the resulting migrations can then be
replayed and readily subjected to IV&V.

References

[1] R. L. Akers, I. D. Baxter, M. Mehlich, B. J. Ellis,
and K. R. Luecke. Case study: Re-engineering C++
component models via automatic program transforma-
tion. Information and Software Technology, 49:275—
291, 2007.

[2] S.Ballmer. http://www.microsoft.com/mscorp/execmail/2002/10-

02customers.mspx.

[3] K. Kontogiannis, J. Martin, K. Wong, R. Gregory,
H. Mueller, and J. Mylopoulos. Code migration
through transformations: An experience report, 1998.

[4] T. Lindholm and F. Yellin, editors. The Java Virtual
Machine (Second Edition). Addison-Wesley, 1999.

[5] J. Martin. Ephedra - A C to Java Migration Environ-
ment: Approaches, case studies and tools for migrat-
ing legacy systems from C and C++ to Java. Lambert
Academic Publishing, 2011.

[6] J. Martin and H. A. Miiller. Strategies for Migration
from C to Java. In Proceedings of the 5th European
Conference for Software Maintenance and Reengi-
neering, Lisbon, Portugal, 2001.

[7] J. Martin and H. A. Miiller. C to Java Migration Ex-
periences. In Proceedings of the 6th European Con-
ference for Software Maintenance and Reengineering,
Budapest, Hungary, 2002.

[8] V. Pareto. Manuale di Economia Politica. Piccola
Biblioteca Scientifica, Milan, 1906.

[9] W. Partners. Case Studies on Platform Migration.
Technical Report ITEA-04032, ITEA, 2008.

[10] J. T. Perry, V. Winter, H. Siy, S. Srinivasan, B. D.
Farkas, and J. A. McCoy. The Difficulties of
Type Resolution Algorithms. Technical Report
SAND2010-8745, Sandia National Laboratories, De-
cember 2010.

[11] A. Terekhov and C. Verhoef. The realities of language
conversions. IEEE Software, 17:111-124, 2000.

[12] I. Tilevich. Translating C++ to Java. First German
Java Developers’ Conference Journal, 1997.

[13]

(14]

[15]

V. Winter and J. Beranek. Program Transformation
Using HATS 1.84. In R. Lammel, J. Saraiva, and
J. Visser, editors, Generative and Transformational
Techniques in Software Engineering (GTTSE), volume
4143 of LNCS, pages 378-396, 2006.

V. L. Winter, A. Mametjanov, S. E. Morrison, J. A.
McCoy, and G. L. Wickstrom. Transformation-based
Library Adaptation for Embedded Systems. In Pro-
ceedings of the 10" IEEE International Symposium
on High Assurance Systems Engineering (HASE).
1EEE, 2007.

K. Yasumatsu and N. Doi. SPiCE: A System for
Translating Smalltalk Programs Into a C Environ-

ment. [EEE Transactions on Software Engineering,
21(11):902-912, 1995.

