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  Effect of compressibility on strong shock and 
turbulence interactions 

 
Xiaowen Wang* and Xiaolin Zhong #1

The interactions between turbulent flows and shock waves are important in many 
natural processes as well as scientific and engineering applications, such as volcanic 
eruption, supernova explosion, detonation, medical application of shock wave lithotripsy 
to break up kidney stones, and energy application of the implosion of a cryogenic fuel 
capsule for inertial confinement fusion where very high rates of compression and 
expansion waves are generally observed. These phenomena are strongly nonlinear and 
proven to be very complex to understand with existing tools. One of the fundamental 
building blocks in these complex processes and applications is the canonical problem of 
the interaction of isotropic turbulence and a normal shock. The underlying physics in 
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Abstract 
  
The interactions between turbulent flows and shock waves are important in many natural 
processes as well as scientific and engineering applications. One of the fundamental building 
blocks in these complex processes and applications is the canonical problem of isotropic 
turbulence and a normal shock. Unfortunately, even this fundamental problem is not well 
understood. Recent direct numerical simulation (DNS) results of perfect gas flow showed some 
new trends in turbulent statistics as mean Mach number is increased. In this paper, we first 
conduct extensive DNS studies on canonical strong shock and turbulence interaction problem of 
perfect gas flow with mean Mach numbers ranging from 2 to 30, with the emphasis on 
investigating the effect of compressibility. The results show that maximum values of variance of 
streamwise vorticity fluctuations first increase and then decrease as shock strength is increased. 
The peak of streamwise vorticity fluctuations is observed for shock and turbulence interactions 
with Mach 2.8 shock. For stronger than Mach 2.8 shocks, there is a decrease in streamwise 
vorticity fluctuations. The amplification of Reynolds stress R11 decreases as mean Mach number 
is increased till 8.8, which is consistent with findings of linear interaction analysis. This trend, 
however, reverses as shock strength is increased beyond Mach 8.8. For stronger than Mach 8.8 
shocks, Reynolds stress R11 is amplified as mean Mach number keeps increasing. Since gas 
temperature increases dramatically after strong shocks, we are also working on DNS of non-
equilibrium flow, where non-equilibrium flow effects including internal energy excitations, 
translation-vibration energy relaxation, and chemical reactions among different species are 
considered based on the 5-species air chemistry and recently thermal property models. The code 
and corresponding thermo-chemical models have been tested on two cases of non-equilibrium 
flow over cylinders. 
 
 

1. Introduction 
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strong shock and turbulence interaction is essential for better understanding of such 
processes and applications. Unfortunately, even this fundamental problem is not well 
understood. 

A schematic of canonical strong shock and turbulence interaction problem is shown 
in Fig. 1. In such flows, the coupling between shock wave and turbulent flow is very 
strong. Complex linear and nonlinear mechanisms are involved which alter the dynamics 
of the shock motion and can cause considerable changes in the structure of turbulence 
and its statistical properties. This fundamental shock and turbulence interaction problem 
has been a challenge for experimentalists, theorists and computational researchers for 
more than fifty years. 

01E-222E-22Y1E-22Z01E-22X

Outgoing
Subsonic
Flow

Incoming
Supersonic
Flow

Shock  
Fig. 1. A schematic of canonical strong shock and turbulence interaction problem [1]. 

 
1.1 Background 
 

Theoretical studies in the field of shock and turbulence interaction have been 
attempted mostly through linear interaction analysis where small perturbations in flow 
are considered. Kovasznay [2] showed that for weak fluctuations of density, pressure, and 
entropy, turbulent fluctuations about mean uniform flow can be decomposed into 
vorticity, acoustic, and entropy modes. It was shown that at first-order approximation, 
each of these modes evolves independently in the inviscid limit. Modifications of random 
small fluctuations of pressure, entropy and vorticity after passing through shock or flame 
were studied by Moore [3] and Kerrebrock [4]. It was found that all modes of 
disturbances are generated in the downstream flow if any of the modes is presented in the 
upstream flow. More recent theoretical studies of shock and turbulence interaction were 
carried out by Goldstein [5], Lee et al. [6, 7], Mahesh et al. [8, 9] and Fabre et al. [10]. It 
was found in these studies that root mean square values of fluctuating pressure, 
temperature, and density as well as different components of turbulent kinetic energy are 
amplified across the shocks. Despite several assumptions, linear interaction analysis 
satisfactorily predicts essential characteristics of the interaction. 

Since theoretical studies are valid only for very small perturbations, various attempts 
have been made towards DNS of shock and turbulence interactions since the early 80s. 
Initial efforts in this area were focused on the interaction of shock with simple 
disturbance waves. In 1981, Pao and Salas [11] fitted the shock at inflow boundary and 
solved Euler equation with finite difference discretization to study a shock/vortex 
interaction. Shock-fitting computations with pseudo-spectral (Zang et. al [12]) and 
spectral techniques (Hussaini et al [13, 14]) were later used to treat the problems in which 
a single vortex, a vortex sheet, an entropy spot or acoustic wave interacts with the shock. 
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The results obtained from these numerical efforts confirmed the linear theory for weak 
shocks. With the advent of essentially non-oscillatory (ENO) and related schemes, a 
number of shock-capturing schemes for compressible flows have been tested for 
interaction of shock with small disturbances. Although limited to low Mach numbers, 
these studies mostly confirm the linear interaction analysis results [14-16]. 

For studies of a fully turbulent field interacting with shocks, DNS methods and large 
eddy simulations (LES) have been used. However these different types of methods give 
different results when interaction with shock is considered [17]. Most of the recent DNS 
studies have been on various aspects of interaction of a normal shock with freestream 
turbulence for relatively weak shock at small Mach numbers. For example, Mahesh et al. 
[8, 9] did extensive DNS studies on the interaction of a normal shock with an isotropic 
turbulence. The mean shock Mach numbers were in the range of 1.29 to 1.8. They found 
that the upstream correlation between the vorticity and entropy fluctuations has strong 
influence on the evolution of the turbulence across the shock. Lee et al. [7] investigated 
the effect of Mach numbers on isotropic turbulence interacting with a shock wave. The 
range of Mach numbers was from 1.5 to 3.0. A shock-capturing scheme was developed to 
simulate the unsteady interaction of turbulence with shock waves. It was found that 
turbulence kinetic energy is amplified across the shock wave, and this amplification tends 
to saturate beyond Mach 3. Hannapel et al. [18] computed shock and turbulence 
interaction of a Mach 2 shock with a third-order shock-capturing scheme based on the 
essentially non-oscillatory (ENO) algorithm. Jamme et al. [19] carried out a DNS study 
of the interaction between normal shock waves of moderate strength (Mach 1.2 and Mach 
1.5) and isotropic turbulence. Adams and Shariff [20, 21] proposed a class of upwind-
biased finite-difference schemes with a compact stencil for shock and turbulence 
interaction simulation. They used the non-conservative upwind scheme in smooth region 
while a shock-capturing ENO scheme was turned on around discontinuities. This idea of 
hybrid formulation was improved by Pirozzoli [22] who used similar hybrid formulation 
for a compact weighted essentially non-oscillatory (WENO) scheme with conservative 
formulation for simulation of shock and turbulence interaction. Ducros et al. [23] 
conducted LES studies on shock and turbulence interaction by using a second-order finite 
volume scheme. The method was then used to simulate the interaction of a Mach 1.2 
shock with homogeneous turbulence. 

It is noticed that flows with stronger than Mach 3 shocks have not been considered in 
the past for shock and turbulence interaction problems. High-order shock-capturing 
schemes have been the methods of choice in most previous numerical simulation studies 
of shock and turbulence interaction [8, 9, 24, 25]. However, popular shock-capturing 
schemes are not very accurate in this regard as they inherently use numerical dissipation 
in the whole computational domain. Moreover, spurious numerical oscillations have also 
been observed when solving strong shock and turbulence interaction problems with 
shock-capturing schemes [26]. Moreover, in shock-capturing schemes, the shock spreads 
over a few grid points. With strong shocks, the thickness of the shock front decreases 
which requires more resolution for shock-capturing schemes. Thus, constraint due to 
choice of algorithms has been one of the main limitations in past studies. DNS results are 
currently available for Re 12 22λ = − , where Reλ is Reynolds number based Taylor 
microscale λ . However, the typical Reynolds number in real shock and turbulence 
interaction experiments are Re 200 750λ = −  [27]. The highest Reynolds number of flow 
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 4 

that can be resolved using DNS is bounded by the available computational resources. It 
was estimated that for DNS of shock and turbulence interaction with Re 100λ ≈ around 

919 10×  grid points were needed [28]. Prohibitively large computational resources are 
needed for better understanding of realistic flow situations and inadequate computational 
resources have been another limitation in past studies.  

To avoid such problems in existing numerical simulation tools, Rawat and Zhong [1, 
29] recently proposed a unique approach of using a high-order shock-fitting and shock-
capturing method. The main shock is treated by the shock-fitting method as a sharp 
boundary of the computational domain. The weak or secondary shocks behind the main 
shock induced by interactions of the main shock and turbulence are captured by high-
order shock-capturing methods. The shock dynamics is governed by a combination of 
shock jump conditions and a comparability relation from the flow behind main shock. In 
this way, the interaction of the main shock with freestream turbulence is computed 
accurately. Compared to shock-capturing methods, the main advantage of the shock-
fitting method is uniform high-order accuracy for flow containing shock waves and no 
spurious oscillations [30]. On the contrary, most of the popular shock-capturing methods 
are only first-order accurate at the shock and may incur spurious numerical oscillations 
near the shock. Rawat and Zhong applied the shock-fitting method to DNS studies on 
strong shock and turbulence interactions of perfect gas flow. The range of shock Mach 
number is 2 20M = − . Their results agreed well with those from linear theory and other 
numerical efforts for weaker than Mach 8 shocks. However, as they increased the shock 
strengths to the values beyond those considered in the past, new trends were observed. 
Specifically, it was found that, in post-shock turbulent flow, the mean value of 
streamwise velocity is larger than corresponding laminar values whereas the mean value 
of pressure is smaller than corresponding laminar values (Fig. 2). The difference between 
turbulent and laminar values decreases as shock strength is increased.  

 
(a) streamwise velocity                                       (b) pressure  

Fig. 2. Comparison of mean values of flow variables in post-shock turbulent flow with the 
corresponding laminar values[29]. 
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Figure 3 shows the amplification in streamwise velocity fluctuations for cases with 
different shock Mach number. It was observed to decrease for weaker than Mach 8 
shocks, which is in accordance with the linear theory results. This trend, however, 
reverses for stronger shocks. Same trends were observed for turbulent kinetic energy. 
Their calculations also showed that, contrary to the previous findings for weaker shocks, 
increasing shock strength does not simply increase the streamwise vorticity fluctuations. 
In fact, beyond a certain Mach number, amplification in streamwise vorticity fluctuations 
decreases and the flow’s return to isotropy is delayed (Fig. 4). 

 
(a) M = 2-8                                                 (b) M = 8 - 20  

Fig. 3. The amplification in streamwise velocity fluctuations at different shock Mach number [29] 
 

 
 

(a) vorticity flucuation                                (b) variation of anisotropy  
Fig. 4. Streamwise vorticity fluctuations values for inflow of Reλ = 29:2 and Mt = 0.124 [29] 

 
The above results are quite interesting and exciting. Basically, for very strong shock, 

new trends of turbulence statistics appear which is never observed in previous researches 
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 6 

for weak shocks. But for turbulent flow interacting with very strong shocks, gas 
temperature increases dramatically after strong shocks. It is well known that thermal 
properties of air strongly depend on the temperature [31]. For example, at temperatures 
above 2000-2500 K, vibration energy mode is fully excited and O2 starts dissociating. 
Around 4000 K, O2 is completely dissociated and N2 starts dissociating. Therefore, non-
equilibrium flow effects including internal energy excitations, translation-vibration 
energy relaxation, and chemical reactions among different species need to be considered 
in DNS studies.  
 
1.2 Objectives 
 

A study of the literature in the field of shock and turbulence interactions shows that 
these complex configurations are part of a number of important applications but the 
current scientific understanding of strong shock and turbulence interactions in complex 
configurations and the ability to reliably predict these strongly nonlinear flows remain 
limited. We want to carry out DNS studies on large scale computations of strong shock 
and turbulence interactions, including non-equilibrium flow effects. The overall objective 
of this paper is to conduct extensive DNS studies on strong shock and turbulence 
interactions of perfect gas flow to obtain more quantitative results and to validate our new 
3-D high-order shock-fitting code for DNS of non-equilibrium flow. DNS studies on 
canonical strong shock and turbulence interaction problem of perfect gas flow are extensively 
conducted with mean Mach numbers ranging from 2 to 30, with the emphasis on investigating the 
effect of compressibility.  

In the past years, interest in various types of vehicles in hypersonic flow regime 
produced numerous structured grid based non-equilibrium flow solvers. Laura, DPLR, 
and US3D are the most frequently referenced and are intensively validated against each 
other [32]. These codes are efficient in solving non-equilibrium flows. However, they are 
generally second- and third-order solvers, which may not be good enough for accurate 
simulation of shock and turbulence interactions. We are also working on DNS studies on 
strong shock and turbulence interaction of non-equilibrium flow, where non-equilibrium flow 
effects including internal energy excitations, translation-vibration energy relaxation, and chemical 
reactions among different species are considered based on the 5-species air chemistry and 
recently thermal property models. The new shock-fitting code is implemented based on a 
two-temperature model. It is assumed that translational and rotational energy modes are 
in equilibrium at the translational temperature whereas vibration energy and electronic 
energy are in equilibrium at the vibration temperature. The flow solver uses the fifth-
order shock-fitting method of Zhong [33] with local Lax-Friedrichs flux splitting. In this 
paper, a high-order shock-fitting non-equilibrium flow solver based on 5-species air 
chemistry and recently thermo-chemical models are implemented and tested on two cases 
of non-equilibrium flow over cylinders. DNS results on shock and turbulence interaction 
of perfect gas flow and non-equilibrium flow will be used to produce a set of highly 
resolved databases which will be used to develop turbulence models. 
 
 

2. Governing equations and numerical methods 
 
2.1 Governing equation 
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 7 

 
The governing equations for non-equilibrium flows based on 5-species air chemistry 

are Navier-Stokes equation with source terms (no radiation). Specifically, they consist of 
the following equations. 

 ( ) ( )s s
s j s s

j j j

yu D
t x x x
ρ ρ ρ ω∂ ∂∂ ∂

+ − =
∂ ∂ ∂ ∂

 (1) 

 2( ) ( ) 0
3

ji k
i i j ij ij

j j j i k

uu uu u u p
t x x x x x
ρ ρ δ µ µ δ

  ∂∂ ∂∂ ∂ ∂
+ + − + − =   ∂ ∂ ∂ ∂ ∂ ∂   

 (2) 

               2( )
3

ji k
j i i ij

j j j i k

uu uE Hu u u
t x x x x x
ρ ρ µ µ δ

  ∂∂ ∂∂ ∂ ∂
+ − + −   ∂ ∂ ∂ ∂ ∂ ∂   

 

                         
5

1
0s V

s s V
sj j j j j

y TTh D K K
x x x x x

ρ
=

   ∂ ∂∂ ∂ ∂
− − + =      ∂ ∂ ∂ ∂ ∂   

∑  (3) 

          
5 3 5

, , ,
1 1 1

( ) ( )V s V
V j V s s V T V s s V s

s s sj j j j j

e y Te u e D K Q e
t x x x x x

ρ ρ ρ ω−
= = =

 ∂ ∂ ∂∂ ∂ ∂
+ − − = +  ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑ ∑ (4) 

where,  
5

1
s

s
ρ ρ

=

=∑  ( )

( )
5

1

s s
s

i i
i

c M
y

c M
=

=

∑
 

  
5

1
s

s
p p

=

=∑   s
s

s

RTp
M
ρ

=  

  
5

12
i i s s

s

u u eE ρ
ρ=

= +∑  pH E
ρ

= +  

R  is the universal gas constant. All the terms in the above governing equations are in 
non-dimensionalized form where important characteristics of the flow upstream of the 
shock are used for non-dimensionalization. Simulation of incoming isotropic turbulence 
is carried out as a temporal simulation in a periodic box. Initial conditions for periodic 
box are random fluctuations in flow variables with prescribed spectra (with 0k  as the 
most energetic wave number) and given velocity fluctuations. Root mean square (rms) 
values of these velocity fluctuations *

0u , upstream fluid density *
1ρ  and temperature *

1T  
are chosen to non-dimensionalize all the flow variables and functions. Length is non-
dimenionalized by *

0 0 / 2k λ  where *
0λ  is the Taylor microscale. In DNS of perfect gas 

flow, the source terms and all terms relating to vibration energy ( VK  & Ve ) are neglected. 
The viscosity coefficient µ is determined by the power law, 
 ( )0.76

0 0T Tµ µ=   (5) 
where 0µ  and 0T  are reference values. The thermal conductivity K is computed from the 
Prandtl number, which is assumed constant at 0.7. Detail models of thermal properties in 
DNS of non-equilibrium flow are discussed later,  

The corresponding matrix form of governing equations is as follows,  

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 N

ov
em

be
r 

22
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
12

43
 



 8 

 3 31 2 1 2F GF F G GU S
t x y z x y z

∂ ∂∂ ∂ ∂ ∂∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (6) 

Where   F stands for inviscid flux,  
            G stands for viscous flux,  
            S stands for source terms.  

                       ( )T
1 2 11, , , , , , , , VU u v w E eρ ρ ρ ρ ρ ρ ρ ρ=   

The corresponding inviscid and viscous fluxes are  

1

2
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2
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j

j

j jj

j j

j j

j

V j
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u

u
uu pF
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ρ

ρ
ρ δ
ρ δ
ρ δ

ρ
ρ
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 
 
 
 
 
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 
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 
 
 
 
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1 1
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2
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1
5
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1

j

j

j

j

j j

j

i ij j Vj s s sj
s

Vj s V s sj
s
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v

v

G
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q e v

ρ
ρ

ρ
τ
τ
τ

τ ρ

ρ

=

=

 
 
 
 
 
 
 −
 

= − 
 −
 
 − + + + 
 
 

+ 
 

∑

∑



 

Source term is as follows, 
1

2

5

3

, ,
1

0
0
0
0

( )T V s s V s
s

S

Q e

ω
ω

ω

ω−
=

 
 
 
 
 
 
 

=  
 
 
 
 
 
 + 
 
∑



 

In above equations, sj sj jv u u= −  is diffusion velocity of species s.  
 
2.2 Coordinate transform 
 

The flow solver uses structured grids, and the following grid transform is applied. 

 

( , , , ) ( , , , )
( , , , ) ( , , , )
( , , , ) ( , , , )

x x x y z t
y y x y z t
z z x y z t
t t

ξ η ζ τ ξ ξ
ξ η ζ τ η η
ξ η ζ τ ζ ζ

τ τ

= = 
 = = ⇔ = = 
 = = 

 (7) 
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 9 

Jacobian of the transform is,  

 

0
0
0
1

x y z
x y z

J
x y z
x y z

ξ ξ ξ

η η η

ζ ζ ζ

τ τ τ

=  (8) 

With the transform relation, the governing equations in ( , , ,ξ η ζ τ ) coordinate system 
are written as 

 3 31 2 1 2( ) F GF F G GJU JS
τ ξ η ζ ξ η ζ

∂ ∂∂ ∂ ∂ ∂∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂

  

 (9) 

Where 
1 1 2 3x y z tF J F J F J F JUξ ξ ξ ξ= + + +  

2 1 2 3x y z tF J F J F J F JUη η η η= + + +  

3 1 2 3x y z tF J F J F J F JUζ ζ ζ ζ= + + +  

1 1 2 3x y zG J G J G J Gξ ξ ξ= + +  

2 1 2 3x y zG J G J G J Gη η η= + +  

3 1 2 3x y zG J G J G J Gζ ζ ζ= + +  
 
2.3 Numerical method 
 

The governing equations are solved by the fifth-order shock-fitting method of Zhong 
[33]. For the thermally non-equilibrium and chemically reacting system (6) in the 
direction, ( )1 2 3k , ,k k k= , the corresponding inviscid flux term is 

 

1

2

3

4

5

1

2

3

k u
k u
k u
k u
k u

F
k u
k u
k u

k u
k uV

u pk
v pk
w pk

H
e

ρ
ρ
ρ
ρ
ρ

ρ
ρ
ρ
ρ
ρ

 
 
 
 
 
 
 
 =

+ 
 + 

+ 
 
 
 
 

 (10) 

Hence the Jacobian of flux is defined as,  

 FA
U

L R∂
= = Λ
∂

 (11) 
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( ) 0 0

k

sr s s x s y s z

r x x x x y x z x x

r y y x y y y z y y

r z z x z y z z z z

r x y z

U c c n c n c n
n Uu un un U vn un wn un n n
n Uv un vn vn vn U wn vn n n

A
n Uw un wn vn wn wn wn U n n
U UH uU Hn vU Hn wU Hn

δ
γ β β β β φ
γ β β β β φ
γ β β β β φ
γ β β β β

−
− − + + − + − +
− − + − + + − +

=
− − + − + − + +
− − + − + − +



 



 



 



     



0V V x V y V z

U U U
Ue e n e n e n U

φ

 
 
 
 
 
 
 +
 

−  

 

 

 

 

2

2

0 0
0 0

sr s r s s s s s

x y z

x y z

r x y z

r x y z

V r V V V V V

a c uc vc wc c c
V l l l
W m m m

R
Ua an u an v an w
Ua an u an v an w

e ue ve we e a e

δ γ β β β β φ

γ β β β β φ
γ β β β β φ

γ β β β β φ

 − − −
 − 
 −

=  
− − − − 

 + − − − − − −
 

− − −  

















 

 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2 2

2 2 2
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/ ( ) / 2 ( ) / 2 0
/ ( ) / 2 ( ) / 2 0
/ ( ) / 2 ( ) / 2 0

( ) / ( ) / 2 ( ) / 2 /

0 0 0 / 2 / 2 1/

sr s s

x x x x

y y y y

z z z z

r

V V

a c a c a
u a l m u an a u an a
v a l m v an a v an a

L w a l m w an a w an a

u v w a V W H aU a H aU a a

e a e a a

δ

β γ β φ β


 + −
 + −
= + −
 + + − + − − 


   













 

 
The eigenvalues of Jacobian matrix (11) are  
 1,2,5 k Uλ =   (12) 
 
 3 k ( )U aλ = +  (13) 
 
 4 k ( )U aλ = −  (14) 
where subscript “s” refers to row s and species s, whereas subscript “r” refers to column r 
and species r. Both s and r vary from 1 to 5 in the present model. The unit vector n  is 
defined from vector k as  

1 2 3( , , )n ( , , )
kx y z

k k kn n n= =  

( )l , ,x y zl l l=  and ( )m , ,x y zm m m=  are two unit vectors such that n , l , and  m  are 
mutually orthogonal.  

x y zU un vn wn= + +  

x y zV ul vl wl= + +  

x y zW um vm wm= + +  
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 11 

The derivative of pressure respecting to conservative variables comes from  
 ( ) V s sdp d E ud u vd v wd w d e dβ ρ ρ ρ ρ φ ρ γ ρ= − − − + +   (15) 
where  

 
5

1,

r
s

rs v tr r
s

R
c c M

ρβ
ρ =

= ∑∑
 (16) 

 
,

e

v V e

R
C M

ρφ β
ρ

= −  (17) 

 
2 2 2

,2
q

s s V s
s

RT u v w e e
M

γ β β φ+ +
= + − −  (18) 

 ( )
5

2 2 2 2

1
( ) 1s s V

s

pa c H u v w eγ β φ β
ρ=

 = + − + + + = + ∑   (19) 

In equation (18), q VT T=  when s is an electron, otherwise, qT T= . 
The main computational method we will  use is a fifth-order shock fitting code [33]. 

The flow variables behind the shock are determined by Rankine-Hugoniot relations 
across the main shock and a characteristic compatibility relation from behind the shock. 
With the assumptions of “frozen” flow (no chemical reactions and energy relaxations 
when flow passes through the shock), the species mass fractions and vibration 
temperature keep constant on the two sides of the shock where translation temperature 
jumps across the shock. In this way, shock jumps conditions for total density, momentum 
and total energy are the same as those for perfect gas. In addition, the compatibility 
relation relating to the maximum eigenvalue in wall normal direction is used.  

In shock-fitting method, the velocity and location of the shock are solved as part of 
the solutions. In the interior, compressible Navier-Stokes equations are solved in fully 
conservative form. An explicit finite difference scheme is used for spatial discretization 
of the governing equation, the inviscid flux terms are discretized by a fifth-order upwind 
scheme, and the viscous flux terms are discretized by a sixth-order central scheme. For 
the inviscid flux vectors, the flux Jacobians contain both positive and negative 
eigenvalues. A simple local Lax-Friedrichs scheme is used to split vectors into negative 
and positive wave fields. For example, the flux term F in Eq. (10) can be split into two 
terms of pure positive and negative eigenvalues as follows 
 F F F+ −= +  (20) 

where ( )1
2

F F Uλ+ = + and ( )1
2

F F Uλ− = −  and λ is chosen to be larger than the local 

maximum eigenvalue of F′.  

 ( )2 2| | c u c
J
ηλ ε∇  ′= + + 

 
 (21) 

where  

 
| |

x y z tu v w
u

η η η η
η

+ + +
′ =

∇
 (22) 
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 12 

The parameter ε is a small positive constant added to adjust the smoothness of the 
splitting. The fluxes F+ and F- contain only positive and negative eigenvalues respectively.  
Therefore, in the spatial discretization, the derivative of the flux F is split into two terms 

 F FF
η η η

+ −∂ ∂∂
= +

∂ ∂ ∂
 (23) 

where the first term on the right hand side is discretized by the upwind scheme and the 
second term by the downwind scheme. 

The fifth-order explicit scheme utilizes a 7-point stencil and has an adjustable 
parameter α as follows 

 
63

5
6

3

1 ...
6!i i k i k

ki i i

uu a u h
hb b x

α
+ +

=−

 ∂′ = − + ∂ 
∑  (24) 

where 3 2 1
1 1 5 51 ,  9 ,  4 5 ,  

12 2 4 3i i i iα α α α α α α α± ± ±= ± + = − = ± + = − and 60=ib . The 

scheme is upwind when α <  0 and downwind when α > 0. It becomes a 6-order central 
scheme when α = 0 which is used for discretizing viscous terms. However, for shock and 
turbulence interaction problems, sufficiently high turbulence intensities might produce 
secondary shocks behind the main shock. To handle such cases, shock-capturing methods 
are used to solve the flow behind the main shock. All our methods are coded based on 
message passing interface (MPI) is used for communication in the parallel computations. 

 
Fig. 5. Schematic showing typical density contours and computational domains for simulation of 

shock-turbulence interaction using shock-fitting algorithm [1].  
 

With the shock-fitting algorithm for the problem shown in Fig. 1, there is no need to 
solve the supersonic flow upstream of the shock. Hence, computational domain for the 
shock-fitting method for shock and turbulence interaction consists of flow only 
downstream of the shock. The supersonic turbulent flow ahead of the shock can be 
computed in a separate simulation. A schematic of the shock-fitting implementation for 
the shock-turbulence interaction problem is shown in Fig. 5. The inflow turbulence is 
generated using a separate direct numerical simulation as shown in Fig. 5(a). We 
compute decaying isotropic turbulence in a periodic box to generate the realistic turbulent 
fluctuations that can be used as incoming turbulence for the shock-fitting algorithm. The 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 N

ov
em

be
r 

22
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
12

43
 



 13 

computational domain for implementation of shock-fitting algorithm is shown in Fig. 
5(b). The shock front forms the left boundary of the computational domain.  

The turbulent fluctuations generated from Fig. 5(a) are imposed on supersonic flow 
and used as inflow condition at the shock following the Taylor’s hypothesis that is valid 
for small turbulent intensities ( 0.5tM <  and '

1 1/ 0.15rmsu u < ) [34]. For higher turbulent 
intensities, it is advisable to carry out simulation of spatially decaying turbulence which 
is more expensive. From the temporal simulations inside a periodic box, we obtain values 
of flow variables at fixed grid points of the box. Moreover, when the turbulent box is 
convected through the shock in the shock-fitting computations, the shock-points 
generally do not align with grid points of the turbulent box. Hence, values on the 
supersonic side of the shock are computed using interpolations. Since in our shock-fitting 
formulation the grids move in only one direction (X-direction in Fig. 5(b)), one 
dimensional Fourier interpolation is sufficient for this purpose. As a boundary condition, 
shock-fitting formulation needs the values of the time derivatives of conservative 
variables ahead of the shock according to the isotropic field which using Taylor’s 
hypothesis are taken as appropriate spatial derivatives. Together with one characteristic 
coming to the shock from the high pressure side, these values determine the time 
derivatives at the downstream side. Thus, they are calculated from the corresponding 
upstream values, using the Rankine–Hugoniot conditions. Periodic boundary conditions 
are used in the transverse directions and non-reflecting characteristic boundary conditions 
are used at the subsonic exit of the computational domain. 
 
 

3. Strong shock and turbulence interaction 
 

The extensive DNS studies on strong shock and turbulence interaction of perfect gas 
flow are similar to those of Rawat and Zhong [29]. The main objective is to obtain more 
quantitative results. Therefore, validation of the shock-fitting method and grid 
convergence of DNS results are neglected. In this paper, we conduct extensive DNS 
studies of canonical strong shock and turbulence interaction problem for perfect gas flow 
with mean Mach numbers ranging from 2 to 30, with the emphasis on investigating the 
effect of compressibility. 

 
3.1 Decaying isotropic turbulence in the periodic box  
 

Simulation of decaying isotropic turbulence in a periodic box is started with initial 
conditions generated using the algorithm given by Erlebacher et al [35]. The algorithm is 
based on generating random fields for fluctuations of flow variables and imposing a 
given spectrum. Following spectrum is imposed on the fluctuations of flow variables, 
 ( )24

0( ) exp 2 /E k k k k ∝ −    (25) 

where 2 2 2
1 2 3k k k k= + +  is the wave number of fluctuation and 0k  is the most energetic 

wave number. Figure 6 shows the energy spectra of fluctuations of flow variables before 
and after imposing the prescribed spectra. The fluctuation shown in Fig. 6(b) is used as 
initial conditions for the inflow simulation. This method offers flexibility to generate 
various turbulent regimes.  

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 N

ov
em

be
r 

22
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
12

43
 



 14 

 
(a) random fluctuations                                      (b) scaled fluctuations   

Fig. 6. Spectra of fluctuations of flow variables. 
 

The most important parameters that govern the physics of shock and turbulence 
interactions are turbulent Mach number tM  and Reynolds number based on Taylor 
microscale λ . These quantities are defined as follows: 
 /tM q c=  (26) 
 Re rmsuλ ρ λ µ=  (27) 
where, 

 ( )
1
2" "

i iq u u=  (28)  

For any given variable f , f  denotes an ensemble average and f is mass-weighted 
average i.e. f fρ ρ=  . Deviation from ensemble average and mass-weighted average is 
denoted as 'f and ''f respectively. Subscript ‘1’ has been used to denote the quantities 

upstream of the shock. Speed of sound is denoted as c , ( )1/ 2
''2
1rmsu u= and Taylor 

microscale is ( )1 2 3 / 3λ λ λ λ= + +  where  

 

1/ 2
2

2 ''      ( 1, 2 or 3)uu
x
α

α α
α

λ α
  ∂ = =  ∂  

 (29) 

With the non-dimensionalized governing equations following parameters are used as 
initial condition for generating initial random fluctuations: upstream mean density, 1 1ρ = , 
temperature 1 1T = , initial rms value of velocity fluctuations 0 1rmsu = , Pr 0.7= , 1.4γ = . 
Any values of initial turbulent Mach number, 0tM , and initial Reynolds number, 0Reλ  are 
can be chosen. Non-dimensionalized gas constant is given by 2

03 / tR Mγ=  and reference 
viscosity is given as 0

0 1 0 ,0Rermsu λµ ρ λ=  0 02 kλ = . 

The initial conditions are assigned in a box of dimension ( )32π and compressible 
Navier-stokes equations are solved using periodic boundary conditions in all three 
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directions until reasonably realistic turbulence is achieved. Skewness of velocity 
derivatives is a measure of inertial non-linearity of turbulence. Skewness of streamwise 
velocity derivatives is an important parameter to be monitored during the simulation of 
decaying isotropic turbulence, which is defined as follows, 

 ( ) ( )
3/2

3 2' '
1 1 1 1 1/ /S u x u x = ∂ ∂ ∂ ∂  

 (30) 

For the parameters considered here, a realistic turbulence should have 1S  in the 
range -0.4 to -0.6 [9, 24, 25]. In all of our calculations of inflow turbulence we found that 

1S  reaches steady state in 0
0 / rmst uλ . Figures 7 and 8 show variations of various 

statistics obtained from simulations for flow with initial parameters 0 0.175tM =  and 

0Re 135λ = , and 0 0.15tM =  and 0Re 50λ = , respectively. These computations were 
performed with 3256 grid points. Apart from 1S , we also plot turbulent Mach number, 

tM , variance of velocity fluctuations, Reynolds number based on Taylor microscale, 
Reλ , and variance of dilatation fluctuations, /i id u x= ∂ ∂ . It can be seen that velocity 
fluctuations are dissipated with the time, leading to decay in turbulent Mach number as 
well as Taylor microscale. Sudden increase in dilatation is due to completely solenoidal 
initial conditions and has been reported in previous studies as well [36, 37]. 
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Fig. 7. Variation of various turbulence statistics in simulation of decaying isotropic turbulence 

( 0 0.175tM = , 0Re 135λ = ). 
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Fig. 8. Variation of various turbulence statistics in simulation of decaying isotropic turbulence 

( 0 0.15tM = , 0Re 50λ = ). 
 

After the skewness of velocity derivative, 1S , becomes steady to have value between 
-0.4 and -0.6, we choose a flow-field with desired values of tM  and Reλ  as inflow 
condition for the shock-fitting computations. One can vary the flow conditions of 
decaying isotropic turbulence to obtain well developed realistic turbulence with desired 
statistical properties.  
 
3.2 Shock and turbulence interaction  
 

As discussed in previous sections, the shock-fitting method is best utilized for 
incoming turbulence of low turbulence intensities interacting with very strong shocks. In 
this paper, we present results from 4 different cases of inflow conditions which are listed 
in Table 1. Specifically, we compute 4 cases of DNS computations with varying 
incoming flow of turbulence intensities tM  from 0.083 to 0.143, mean Mach number 
from 2 to 30, and Reynolds number, Reλ , from 18.9 to 52.4. Inflow conditions of Cases I 
& II are obtained from the decaying isotropic turbulence computation for flow with initial 
parameters 0 0.175tM =  and 0Re 135λ =  at 0

0rmstu λ  = 2.0 and 3.0 as shown in Fig. 7. 
Whereas inflow conditions of Cases III & IV are obtained from the decaying isotropic 
turbulence computation for flow with initial parameters 0 0.15tM =  and 0Re 50λ =  at 
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0
0rmstu λ  = 2.0 and 3.0 as shown in Fig. 8. In this paper, the results from all the 4 cases of 

simulations are similar. Therefore, only the results of Cases I & III are discussed. 
 

Table 1: Cases of inflow conditions used in DNS of shock and turbulence interaction. 

  M1 Mt Reλ Grids 
Case I 2  - 30 0.143 52.4 2562×512 
Case II 10  -  30 0.118 39.4 2562×512 
Case III 2  -  30 0.104 23.1 2562×512 
Case IV 10  -  30 0.083 18.9 2562×512 

 
The computational domain for DNS of shock and turbulence interaction is shown in 

Fig. 5(b). The shock forms the left boundary of the computational domain. The turbulent 
fluctuations generated from Fig. 5(a) on a periodic box of dimensions 32π  are imposed 
on supersonic flow and used as inflow condition at the shock. For shock-fitting 
computations, we use a domain of size 24 2π π×  and same non-dimensionalization is 
used as used for inflow computations. Uniform conditions corresponding to laminar 
Rankine-Hugoniot jump conditions are used as initial condition for simulation of post-
shock flow. As the shock interacts with the incoming flow, transients are generated. 
Several flow-through of inflow box are needed before turbulence statistics in post-shock 
flow reach a steady state.  

It is observed from previous shock-turbulence interaction simulations that turbulent 
fluctuations are generally much stronger just behind the shock. Hence, to appropriately 
resolve the flow it is advisable to cluster more grid points near the shock. The grid-
spacing in transverse direction is determined by the need to resolve all the lengthscales in 
DNS of turbulent flow. For simulation of isotropic flows, it has been suggested that one 
should resolve a wavelength of 4.5 sη  where sη  is the Kolmogorov length scale for the 
flow in the computational domain [38]. With our high-order finite-difference scheme 
such resolution will require a grid spacing of 2.0 sη  in transverse direction. On the 
upstream side of the shock, the Kolmogorov length scale is defined as 0 0.51 Reλη λ≈ . 
Larsson and Lele [39] have recently presented the relation for change in Kolmogorov 
length scale across the shock which leads to 11/8 3/8

0 ( ) ( )s s u s up pη η ρ ρ −≈ [28]. 
Assuming 02 / kλ ≈ , more than 11/8 3/8

06.1 Re ( ) ( )s u s uk p pλ ρ ρ −  grids are needed in 
transverse directions. Based on these requirements, we chose to use 256 grid points in 
transverse direction. 

For computations of statistics, we need averaging over transverse directions as well 
as in time as the turbulence behind the shock is stationary and homogeneous in spanwise 
directions. We found that storing and computing averages from 60 instantaneous flow-
fields during time interval T is necessary for statistical convergence, where T represents 
the time needed for flow-through of one length of periodic box. Figure 9 shows the 
streamwise-streamwise Reynolds Stress, " "

11 1 1R u u=  (normalized by inflow Reynolds 
Stress), computed for one flow-through of inflow box at several different points in time. 
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These calculations are for inflow conditions of 1 30M = , 0.143tM =  and Re 52.4λ = . 
All of these cases used 60 snapshots for averaging the statistics.  

k0x1

R
11

0 10 20 30 40 50
0

1

2

3

4

statistics from t = 2.5T to 3.5T

statistics from t = 3T to 4T

statistics from t = T to 2T

statistics from t = 1.5T to 2.5T

statistics from t = 2T to 3T

 
Fig. 9. The streamwise-streamwise Reynolds stress computed using 60 snapshots of flow-fields at 

different points in time (case I, 1 30M = ). 

k0x1

R
11

0 10 20 30 40 50

1

2

statistics from t = 6.5T to 7.5T
statistics from t = 7T to 8T

statistics from t = 3T to 4T

statistics from t = 5.5T to 6.5T
statistics from t = 6T to 7T

statistics from t = 3.5T to 4.5T
statistics from t = 4T to 5T
statistics from t = 4.5T to 5.5T
statistics from t = 5T to 6T

 
Fig. 10. The streamwise-streamwise Reynolds stress computed using 60 snapshots of flow-fields 

at different points in time (case III, 1 30M = ). 
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It can be seen that statistics reach steady state in longer region behind the shock 
wave as time progresses. It was observed that we obtain steady state in a region of length 

014 / k  behind the shock after 4 flow-through lengths of the inflow. Similar statistics of 
the streamwise-streamwise Reynolds Stress for inflow conditions of 1 30M = , 

0.104tM =  and Re 23.1λ =  are shown in Fig. 10. Again, it is observed that statistics 
reach steady state in longer region behind the shock wave as time progresses. We obtain 
steady state in a region of length 030 / k  behind the shock after 8 flow-through lengths of 
the inflow. 
 
3.3 Effect of compressibility on shock fluctuation  
 

In shock and turbulence interaction, the shock gets distorted. To estimate effect of 
compressibility on shock deformations, we plot RMS values of the fluctuations in 
streamwise coordinate, xrms, in Fig. 11 for case I computations. Here, k0x1 = 0 represents 
the shock whereas k0x1 ≈ 50 represents the exit boundary of the computational domain. It 
is the fluctuation of shock front that leads to the fluctuations of streamwise coordinate. At 
k0x1 = 0, fluctuation of streamwise coordinate is the shock fluctuation. After that, 
fluctuations of streamwise coordinate keep decreasing until they go to zero at k0x1 = 0. 
Figure 11 shows that increasing shock-strength reduces shock deformation. The result is 
quite reasonable. For fixed freestream isotropic turbulence, it is much difficult to distort a 
stronger shock. 

To further examine the dependence of shock deformation on inflow parameters, we 
also compute results using linear interaction analysis of Mahesh [40]. Linear interaction 
analysis predicts shock fluctuation being almost linearly proportional to the turbulence 
intensity ( 1/tM M ). The shock fluctuation predictions from linear interaction analysis 
assume perfectly incompressible fluctuations in inviscid fluid. Our computations, on the 
other hand, solve relatively viscous flows using developed turbulence. In general, for 
very strong shocks, it is seen that linear interaction analysis underpredicts the shock 
displacement fluctuations. Similar conclusion can be drawn in Fig. 12, where RMS 
values of the fluctuations in streamwise coordinate for case III computations are plotted. 
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Fig. 11. Root mean square values of fluctuations in streamwise coordinate (case I). 
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Fig. 12. Root mean square values of fluctuations in streamwise coordinate (case III). 
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3.4 Effect of compressibility on mean flow 
 

For the post-shock flows in shock and turbulence interactions, the linear theory 
results assume fluctuations around the mean values given by Rankine-Hugoniot jump 
conditions. Lele [41] used results of rapid distortion theory to find shock-jump relations 
in turbulent flows. A drift velocity in normal shock moving through a turbulent flow was 
found to be necessary to sustain the laminar density ratio corresponding to the stationary 
shock. This corresponds to a smaller jump in mean density and pressure of turbulence 
flow across the shock than that predicted by jump conditions. In Figs. 13 and 14, we 
present the profiles of density and streamwise velocity behind the shock for inflow 
conditions of case I. Just downstream of the shock, mean values change rapidly. Mean 
velocity first decreases and then increases while mean density shows a compression of 
the flow followed by an expansion. It is observed that mean density behind the shock is 
lower than that in corresponding laminar flow, which is consistent with those reported in 
the literature [39]. We also observe in Figs. 13 and 14 that as mean Mach number value 
of incoming flow is increased at fixed values of turbulent Mach number and Reynolds 
number, the difference between laminar and turbulent post-shock mean values decreases.  
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Fig. 13. Mean values of density behind the shock for inflow conditions of case I. 
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Fig. 14. Mean values of streamwise velocity behind the shock for inflow conditions of case I. 

 
Again, similar conclusion can be drawn in Figs. 15 and 16, where mean values of 

density and streamwise velocity behind the shock for case III computations are plotted. 
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Fig. 15. Mean values of density behind the shock for inflow conditions of case III. 
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Fig. 16. Mean values of streamwise velocity behind the shock for inflow conditions of case III. 
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3.5 Effect of compressibility on vorticity variance 
 

For the quasi-incompressible inflow turbulence, one of the most important 
contributions to the dissipation of turbulent kinetic energy is expected from the vorticity 
fluctuations. Linear interaction analysis predicts an increase in the transverse vorticity 
values which is expected to remain constant downstream of the shock. Amplitude of 
streamwise vorticity fluctuations is expected to remain unchanged throughout the 
computational domain. We observe these trends at the shock. However, downstream of 
the shock considerable non-linear effects are observed since both streamwise and 
transverse vorticity values change significantly moving away from the shock.  
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Fig. 17. Effect of increasing mean Mach number on the variance of streamwise vorticity for 

inflow conditions of case I. 
 
Evolutions of variance in streamwise vorticity fluctuations," "

1 1ω ω , is presented in Figs. 
17 and 18 with the varying shock strengths but using same inflow turbulence of case I 
and case III, respectively. Figure 17 shows that, for weaker than Mach 12 shocks in case I, 
streamwise vorticity increases behind the shock. In case III, Figure 18 shows that, for 
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weaker than Mach 7 shocks, streamwise vorticity increases behind the shock. Such 
increase is attributed to the non-linear tilting and stretching of vorticity and has also been 
reported in the past studies [7, 39]. Both figures show that maximum values of variance 
of streamwise vorticity fluctuations first increase and then decrease as the shock strength 
is increased. Furthermore, the peak of streamwise vorticity fluctuations is observed for 
shock and turbulence interactions with Mach 2.8 shock. In past, researchers [7, 39] 
considered weaker than Mach 3 shocks for such comparisons and concluded that effect of 
increasing shock strength is to simply increase the amplification of streamwise vorticity 
fluctuations. Although our results agree to these trend for lower Mach numbers, we see 
that for stronger than Mach 2.8 flows there is a decrease in streamwise vorticity. It is 
observed that non-linear tilting and stretching is suppressed by the viscous dissipation 
and streamwise vorticity continuously decreases downstream of the shock for stronger 
than Mach 12 shocks in Case I and for stronger than Mach 7 shocks in Case III. 
Therefore, the suppression of vorticity tilting and stretching in post-shock flow strongly 
depends on the inflow conditions. 
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Fig. 18. Effect of increasing mean Mach number on the variance of streamwise vorticity for 

inflow conditions of case III. 
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3.6 Effect of compressibility on Reynolds stress R11 
 

Linear interaction analysis predicts that the amplification in turbulent kinetic energy 
saturates for stronger than Mach 3 shocks. Moreover, amplification of variance of 
streamwise-streamwise Reynolds stresses, 11R , is expected to decrease beyond Mach 3 
shocks. We varied mean Mach number of the incoming flow from 2 to 30 for all cases of 
inflow conditions to see the effect of compressibility on shock turbulence interactions. 
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Fig. 19. Evoluations in streamwise-streamwise Reynolds stresses for inflow conditions of case I. 

 
Streamwise variation of 11R  for various shock strengths is shown in Fig. 19 for 

inflow conditions of case I. Similar variations were observed in all the inflow cases 
considered in this paper. In general, the 11R  values evolve rapidly behind the shock for all 
the shock strengths considered and reach maximum value before 0 010 /x k= . It is 
observed that maximum amplification of Reynolds stress R11 decreases as the Mach 
number of the mean flow is increased till 8.8. The decrease in 11R  is consistent with 
findings of linear interaction analysis. This trend, however, reverses as shock strength is 
increased beyond Mach 8.8. For stronger than Mach 8.8 shocks, the Reynolds stress R11 
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is amplified as mean Mach number is increased. Similar conclusion can be drawn in Fig. 
20, where streamwise variation of 11R  for various shock strengths for inflow conditions 
of case III is shown. 
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Fig. 20. Evoluations in streamwise-streamwise Reynolds stresses for inflow conditions of case III. 
 
 

4. Non-equilibrium models 
 
4.1 Model of vibration and electron energy 

 
To consider the high temperature effects, the model of vibration and electron energy 

used in Hash et al.’s paper [32] are implemented in the code. Vibration energy and 
electron energy are considered separately with different formula. Specific total enthalpy 
of species and specific heat in constant pressure of species are defined as,  

 0s
s vs V s

s

ph c T E h
ρ

= + + +  (31) 

 s s s
p v V

s

Rc c c
M

= + +  (32) 
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where 0
sh is the generation enthalpy of species. The variables on the right hand side of 

equations (31) and (32) are calculated from the following formula, 
3 5

, , , , ,1

1 1 , , ,0

exp( )
( )

1 exp( )vs V

i s el i s el i s Vvs i
V v els T

s ss i s el i s Vi

g TRE e e
M e g Tθ

θ θθ
θ

∞

=
∞

= =
=

 −
 = + = +
 − − 

∑∑ ∑
∑

 

, ,
s
v vtr s vrot sc c c= +  ,

3
2vtr s

s

Rc
M

=  ,

( 1,3)

0 ( )
vrot s s

R s
c M

otherwise


== 




 

( )
( )

( )

( )
( )

2
2

, , , , ,1

2
, , ,0

2
, , , , , , , , , ,1 0

2

, , ,0

exp( )

exp( )1

exp( ) exp( )

exp( )

vs V

vs V

T i s el i s V el i s Vivs Vs
V T

s i s el i s Vi

i s el i s el i s V i s el i s V el i s Vi i

i s el i s Vi

g T TT eRc
M g Te

g T g T T

g T

θ

θ

θ θθ

θ

θ θ θ θ

θ

∞

=

∞

=

∞ ∞

= =

∞

=

  −  = +
−−


   − −    − 
−


∑
∑

∑ ∑
∑

 

The related parameters are listed in Table 2 and Table 3.  
 

Table 2. Electronic energy states for 5-species air 
Species Θ (K) g Species Θ (K) g Species ΘO (K) g 

N2 0 1 O2 1.13916e4 2 NO 8.88608e4 4 

N2 7.22316e4 3 O2 1.89847e4 1 NO 8.98176e4 4 

N2 8.57786e4 6 O2 4.75597e4 1 NO 8.98845e4 2 

N2 8.60503e4 6 O2 4.99124e4 6 NO 9.04270e4 2 

N2 9.53512e4 3 O2 5.09227e4 3 NO 9.06428e4 2 

N2 9.80564e4 1 O2 7.18986e4 3 NO 9.11176e4 4 

N2 9.96827e4 2 NO 0 4 N 0 4 

N2 1.04898e5 2 NO 5.46735e4 8 N 2.76647e4 10 

N2 1.11649e5 5 NO 6.31714e4 2 N 4.14931e4 6 

N2 1.22584e5 1 NO 6.59945e4 4 O 0 5 

N2 1.24886e5 6 NO 6.90612e4 4 O 2.27708e2 3 

N2 1.28248e5 6 NO 7.0500e4 4 O 3.26569e2 1 

N2 1.33806e5 10 NO 7.49106e4 4 O 2.28303e4 5 

N2 1.40430e5 6 NO 7.62888e4 2 O 4.86199e4 1 

N2 1.50496e5 6 NO 8.67619e4 4    

O2 0 3 NO 8.71443e4 2    
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Table 3. Parameters used vibration energy model 

Species  0
sh (J/kg) sM (g) vsθ (K) 

N2 0 28 3395 
O2 0 32 2239 
NO 2.996123e6 30 2817 
N 3.362161e7 14 - 
O 1.543119e7 16 - 

 
4.2 Thermal properties 
 

For the 5-species air, a more complex model of thermal properties is applied [42]. 
According to this model, thermal properties are calculated as follows, 

 (2) ( )
s s

s r sr
r

m
T

γµ
γ

= ∑ ∆∑
 (g/cm-sec)  (33) 

 (2)

15
4 ( )

s
T

s sr r sr
r

K k
a T

γ
γ

= ∑ ∆∑
 (J/cm-sec-K) (34) 

In above equation, 
( ) ( )

( )

1 0.45 2.54
1 21

s r s r
sr

s r

m m m m
a

m m

      

  

− −
= +

+
 

 (1)
1,2,3 ( )

s
R

s r sr
r

K k
T

γ
γ=

= ∑ ∆∑
 (J/cm-sec-K) (35) 

 
5

,
(1)

1 ( )
V V s

V E
s r sr

r

CK k
R T

γ
γ−

=

=
∆∑∑  (J/cm-sec-K) (36)  

To calculate viscosity and heat conductivity, from equation (33) to equation (36), the 
collision terms are as follows, 

 
1

2
(1) 20 (1,1)8 102( ) ( )

3 ( )
s r

sr sr
s r

m mT T
RT m m

π
π

− 
 
 

∆ = Ω
+

 (cm-sec) 

1
2

(2) 20 (2,2)10216( ) ( )
3 ( )

s r
sr sr

s r

m mT T
RT m m

π
π

− 
 
 

∆ = Ω
+

 (cm-sec) 

Collision integrals involving neutrals (Non-Coulombic collision integrals) are 

 
2(ln ) ln( , ) ( ) A T B T Cl j

sr T DTπ  + + Ω =  (
0

2A ) (37) 
Species diffusion coefficients are defined as, 

 
( )
(1 )s

s
r sr

r s

yD
y D

≠

−
=
∑

 (38) 

where ys is the molar fraction. For binary diffusion between heavy particles,  
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(1) ( )sr
sr

kTD
p T

=
∆

 

4.3 Chemical source terms 
  
Five reactions are considered for the five species air, i.e., 

2 2N M N M+ = +  
  2 2O M O M+ = +  
  NO M N O M+ = + +  
  2N O NO N+ = +  
  2NO O O N+ = +  
 
Correspondingly, the reaction rates are calculated as follows,  

2

1 1

2

1
N m N N m

f m b m
m N m N N m

R k k
M M M M M
ρ ρ ρ ρ ρ 

= − + 
  

∑  

  2

2 2

2

2
O m O O m

f m b m
m O m O O m

R k k
M M M M M
ρ ρ ρ ρ ρ 

= − + 
  

∑  

  
3 33

NO m N O m
f m b m

m NO m N O m

R k k
M M M M M
ρ ρ ρ ρ ρ 

= − + 
 

∑  

2

4 4

2

4
N O NO N

f b
N O NO N

R k k
M M M M
ρ ρ ρ ρ

= − +  

  2

5 5

2

5
ONO O N

f b
NO O O N

R k k
M M M M

ρρ ρ ρ
= − +  

Finally, the source terms are as follows,  

2 2

2 2

1 4

2 5

3 4 5

1 3 4 5

2 3 4 5

( )

( )

( )
( 2 )
( 2 )

N N

O O

NO NO

N N

O O

M R R

M R R

M R R R
M R R R R
M R R R R

ω

ω

ω
ω
ω

= +


= −
 = − +
 = − − − −
 = − − + +

 

 
The forward and backward reaction rate coefficients have the form of  

( ) ( )expf
f f fk T C T Tη θ= −  

( ) ( )
( )

f

eq

k T
b k Tk T =  

For dissociation reactions, VT TT= . For the other reactions, the control 
temperature is T. The equilibrium constant of chemical reaction is obtained using the 
curve fits of Park [43], i.e., 

1 2
1 2 3 4 5exp( ln )eqk a z a a z a z a z−= + + + +  
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4.4 Energy relaxation 
 

In two temperature model, energy relaxation only happens between translation 
energy and vibration & electron energy, which can be expressed as 

 
*

,
( )vs vs

T v s s
vs

e T eQ ρ
τ−

−
=  (39) 

where, * ( )vse T  is the vibration energy per unit mass of species s evaluated at the local 
translational temperature.    

,
,

1 8( )rr
vs s L T cs s

r sr L T s v s sr

y RTa
y a N M

τ τ τ
τ σ π−

−

= + = + =∑
∑

 

( )1 1
3 4

,
1 exp 0.015 18.42sr L T sr srA T
p

τ µ−
−

 = − −  
 (p in atm) 

413 321.16 10 ( )
s r

r sr vs sr
s r

M MA M Mµ θ µ−= × = +  

( )2
21 50,0003.5exp 10s

s v
shk

S T T
θ σ − = − = 

 
 

Here, sθ  is a defined characteristic temperature.  
 
 

5. Test of shock-fitting method and nonequilibrium models 
 
The two-temperature model of air has been implemented to the fifth-order shock-

fitting method with recent models of thermochemical models. Here we focus our tests on 
shock-fitting method and thermo-chemical models. 
 
5.1 Hornung’s Nitrogen dissociation over 1 inch radius cylinder 

X

Y

0 0.05
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 
Fig. 21. Geometry and free stream flow conditions 

Geometry: Cylinder 
         Ri = 1.27 cm 
         X0 = 2.5 cm 
         Y0 = 5.0 cm 
Free stream conditions: 
         U∞ = 5594 m/s 
         ρ∞ = 4.98e-3 kg/m3 
         P∞ = 2910 Pa 
         T∞ = 1833 K 
         M∞ = 6.18 
Grid:121 × 121 
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The flow conditions of Hornung’s experiment [44] are listed in Fig. 21, together with 
a schematic of the grid used in numerical simulations. This experimental study focused 
on the flow field relating to Nitrogen dissociation over 1 inch radius cylinder. The mass 
fractions of initial gas are as follows, 
   CN2 = 0.927, CN = 0.073 
   CO2 = CNO = CO = 0 
In this case, the five-species air model is used. 

Our numerical simulation results are compared with the experimental measurement 
of Hornung obtained from his paper. As shown in Figs. 22 and 23, the shock standoff 
distance agrees well with experiment and the fringe pattern matches quite well with 
Hornung's experimental measurements. The test result on this case validated that the 
implementations of nonquilibrium and reactive flow solver to the high-order shock-fitting 
code is accurate.   

X
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-0.02 -0.01 0 0.01 0.02 0.03 0.04
-0.03

-0.02

-0.01

0

0.01
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p
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121649
112515
103381
94247.4
85113.5
75979.6
66845.7
57711.8
48577.9
39444
30310.1
21176.2
12042.3

-0.02 -0.01 0 0.01 0.02 0.03 0.04
-0.03
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0
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0.03

         
                                           (a)                                                               (b) 
Fig. 22. Comparisons with experimental measurements: (a) shock standoff distance (Dots stands 

for Hornung’s experimental measurement); (b) fringe patterns (the lower half is Hornung’s 
experimental measurement). 
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Fig. 23. Quantitative comparison of fringe number along the stagnation line. 
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5.2 Gnoffo’s air dissociation over 1 meter radius cylinder 

 
Fig. 24. Mesh sturcture and flow conditions of the test case. 

 
Figure 24 shows the mesh and flow conditions of the test case: 5-species air over a 1-

meter radius cylinder. The temperatures on the cylinder are equal to Tw (= 500 K). 
Catalytic boundary conditions are applied on the wall for species mass fraction. Total 
density is computed from pressure and translational temperature. Then species densities 
are calculated with total density and mass fraction. Total energy and vibration energy are 
calculated using species densities and two temperatures. The mass fractions of initial gas 
are as follows,  
   CN2 = 0.76, CO2 = 0.24 
   CNO = CN = CO = 0 

To make the results comparable, flow conditions are exactly the same as what 
Gnoffo used in his simulation. The simulation results are compared with Gnoffo’s results 
obtained from Laura. 
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                               (a) Pressure                                 (b) Translation temperature 
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                    (c) Vibration temperature                    (d) Species density of NO 

 
Fig. 25. Comparisons of flow field contours obtained from shock-fitting code with those obtained 

from Laura simulation. 
 

Figure 25 compares flow field contours obtained from current shock-fitting code 
with those obtained from Laura code. From the contours of pressure, temperatures, and 
NO density, it is found that shock standoff distances of the two sets of simulations have a 
good agreement. In addition, the flow fields near the wall have a good agreement. Near 
the shock, there is small discrepancy between the two sets of solution, mainly due to the 
different treatment of shock wave. Unlike the shock-fitting code, shock-capturing TVD 
scheme is applied in Laura code. Figure 25(c) shows that the vibration temperature of 
shock-fitting solution is significant different from that of Laura in the shock layer, which 
is mainly caused by the different models of vibration and electronic energy. Laura code 
used curved fitted vibration and electronic energy [45], whereas we used separate models 
for vibration energy and electronic energy.  
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                              (a) Temperatures                           (b) Species densities 

 
Fig. 26. Comparisons of flow variables along the stagnation line obtained from shock-fitting code 

with those obtained from Laura simulation. 
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Since we have detailed flow field information obtained from the Laura code, we can 
also compare the distributions of flow variables along the stagnation line or along the 
cylinder surface. For example, figure 26 compares flow variables along the stagnation 
line obtained from current shock-fitting code with those obtained from Laura code. These 
two figures also show that shock standoff distances of the two sets of simulations have a 
good agreement considering the different treatment of the bow shock. The distributions 
of temperatures and species densities along the stagnation line have a good agreement 
near the wall and have small discrepancy near the shock. Again, the discrepancy near the 
shock is due to the different treatment of shock wave. Overall, Figures 25 and 26 indicate 
that our shock-fitting non-equilibrium flow solver is reliable for the simulation of strong 
shock and turbulence interaction. 
 
 

6. Summary and Future Plan 
 

In current paper, we first conduct extensive DNS studies on the canonical strong 
shock and turbulence interaction problem of perfect gas flow with mean Mach numbers 
ranging from 2 to 30. The objectives of perfect gas flow simulations are to obtain more 
quantitative results and to investigate the effect of compressibility. DNS of perfect gas 
flow show that increasing shock-strength reduces the shock deformation. For very strong 
shocks, linear interaction analysis underpredicts the shock displacement fluctuations. 
Behind the shock, mean velocity first decreases and then increases while mean density 
shows a compression of the flow followed by an expansion. As mean Mach number value 
of incoming flow is increased, the difference between laminar and post-shock turbulent 
mean values decreases. 

The results also show that maximum values of variance of streamwise vorticity 
fluctuations first increase and then decrease as the shock strength is increased. The peak 
of streamwise vorticity fluctuations is observed for shock and turbulence interactions 
with Mach 2.8 shock. For stronger than Mach 2.8 shocks, there is a decrease in 
streamwise vorticity fluctuations. In addition, the suppression of vorticity tilting and 
stretching in post-shock flow strongly depends on the inflow conditions. The 
amplification of Reynolds stress R11 decreases as mean Mach number is increased till 8.8, 
which is consistent with findings of linear interaction analysis. This trend, however, 
reverses as shock strength is increased beyond Mach 8.8. For stronger than Mach 8.8 
shocks, Reynolds stress R11 is amplified as mean Mach number keeps increasing. More 
analyses on DNS results of perfect gas flow are ongoing. 

Since gas temperature increases dramatically after strong shocks and thermal 
properties of air strongly depend on the temperature, non-equilibrium flow effects 
including internal energy excitations, translation-vibration energy relaxation, and 
chemical reactions among different species need to be considered in DNS studies. We 
will continue working on DNS of non-equilibrium flow, where non-equilibrium flow 
effects are considered based on the 5-species air chemistry and recently thermal property 
models. The code has been tested on two cases of non-equilibrium flow over cylinders. 
Although no numerical result is yet obtained for strong shock and turbulence problem at 
high shock Mach number with non-equilibrium effects. 
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