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Dunaliella salina Biotechnology

‘DR Smith, RW Lee, JC Cushman, JK Magnuson, D Tran, JW Polle (2010) The
Dunaliella salina organelle genomes: large sequences, inflated with intronic
and intergenic DNA. BMC Plant Biology, 10:83

Implications for Dunaliella:

Allows “development of a viable plastid transformation
system for this model alga... placing D. salina in a
group of a select few photosynthetic eukaryotes for
which complete genome sequences from all three
genetic compartments are available™

Implications for alga:

Adaptive halophilicity in D. salina provides genetic
feedstock for developing predation-resistant strains
for use in compromised waters and open systems
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Is Dunaliella a suitable biodiesel species?

Lipid yield: 37% organic basis

Dunaliella salina FAME:
v Superb combustion quality (cetane number = 55)
v High cold flow

RAPHIC

v High lubricity - ‘zero’ engine wear scar | v CHEAP
v" Acceptable viscosity _ J_"H.l 0-
v Low sulfur | Self ———C:a:h -o; II
v' Low aromatics Serve _Credit

v Low particulate matter -

v" Carbon neutral
- Poor oxidative stability

Mendoza, H., Martel, A., Jiménez del Rio, M. & Garcia Reina, G. (1999) Oleic acid is the main fatty acid related with carotenogenesis in
Dunaliella salina. Proceedings of the International Seaweed Symposium 16: 529-533.

McCormick R., Graboski M., Alleman T., Herring A., and Shainetyson K. (2001) Impact of biodiesel source material and chemical
structure on emissions of criteria pollutants from a heavy-duty engine. Environ. Sci. Technol., 35, 1742-1747



Photo-Osmotic Adaptation Matrix

Steady-state Cultures

» |[ab scale, semi-continuous, gentle aeration
constant temperature (27°C), log phase

» 3 PAR levels: 50 uE, 150 pE, 275 uE

= 3 osmotic levels: 0.5M, 1.5M, 2.5M NacCl

Dynamic (environmentally stressed) Cultures
= Nitrate l[imitation

» Osmotic shock (+ blocking stretch channels)
» Inhibition of carotenoid biosyntheis (DPA)

Multi-modal + multi-objective optimization

» Reveal correlations among steady-state
culture conditions and biochemical,
morphological, and photosynthetic observables

» Develop comparative matricies for evaluating
iImpact of environmentally stressed cultures

» Demonstrate optimization strategy for variety of
algal bio-products based on growth conditions
and end product
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field,” Oecologia 102,
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21 Measured Parameters

1) Specific Growth Rate (S.G.R, FC) : .

2) Cell volume (FC) } Biomass productivity

3) [Carotenoid]/cell (FC)

4) [ChilA]/cell (FC) :

5) [ChiB)/cell (FC) Algal bioproducts

6) [Lipid]/cell (FC: Nile Red)

7) Cellular complexity (FC) T

8) Cellular stability (FC: debris/cell) v -~ Ease of harvest parameters

9) Motility (FC: depth) Caroen

10) Intracellular pH (pH,,;, FC: SNARF)

11) Medium pH (pH.,;, pH meter)

12) Intracellular calcium ([Ca?*],,, FC: Fura-Red)  » Basic metabolic parameters

3) Nitrate consumption (A[NOs], |.S.E)

14) NAD(P)H consumption (ANAD(P)H, dPAM) )
15) Maximum photosynthetic efficiency (Fm/Fo, dPAM) \
16) Effective photosynth. eff. @ 50uE (Y(Il) 50, RLS-PAM)
17) Effective photosynth. eff. @ 275uE (Y(Il) 275, RLS-PAM) Photo-
18) Non-photochemical quenching @ 50uE (Y(NPQ 275, RLS-PAM) > synthetic
19) Non-photochemical quenching @ 275uE (Y(NPQ) 50, RLS-PAM) parameters
20) Non-protective non-photochemical quenching @50uE (Y(NO) 50, RLS-PAM)
21) Non-protective non-photochemical quenching @275uE (Y(NO) 275, RLS-PAM J



Optimization Method 1: Correlating Observables
(pair-wise for each culture condition at steady-state)

Y(NO) 275 -
Y(NO) 50 -
Y(NPQ) 275 -
Y(NPQ) 50 - c =
Y(Il) 275 -
Y(Il) 50 -
Fn/Fo -
A[NAD(P)H] -
AINO37] - Gp =
[Ca?*]int -
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Correlations among observables, by growth condition
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Global Correlations Among Dunaliella salina Observables

Positive correlations:
[12,8]: [Ca?*],,, * PH,,
[7,6]: [Lipid] * complexity
[10,8]: pH,,, * motility
[11,1]: pH,,, * SGR

[8,5]: matility « [ChIA]
[12,6]: [Ca?*],,, * [Lipid]
[18,6]: Y(NPQ) 50 - [Lipid]
[20,6]: Y(NO) 50 - [Lipid]

int

Anti-correlated parameters:
[1,6]: SGR -« [Lipid]

[8,7]: matility « complexity

[9,6]: mechanical stability ¢ [Lipid]
[1 1 ’6]: pHext * [Llpld]

[8,6]: motility « [Lipid]

[14,8]: AINAD(P)H] « motility
[15,7]: F/F, * complexity

[16,6]: Y(II) 50 « [Lipid]

— kW = M ;M - D

‘Global’ = sum over all conditions
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physiological biomarker discovery
+ correlation v. causation
= simplified detection of preferred traits



Optimization Method 2: Correlating Culture Conditions

(pair-wise for each observable at steady-state)

LLLS -

LLMS -

LLHS -

HLLS -

HLMS -

HLHS -

Observable X

N % ~(P)
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G,= <(O-£_o",- ),-:,;'>

—

—

Osmotic correlations
at low PAR

Mixed photo-osmotic
correlations

Osmotic correlations
at high PAR




Example: condition optimization for
maximum carotenoid, chlorophyll, and lipid

Method isolates
dominant factors

for each observable:
Optimal for growth
275uE, 2M NacCl

Optimal for carotenoid
275uE, 2.5M NaCl

Optimal for Chl-pigment
50uE, 1.5M NaCl

LLMS

Optimal for lipid
112.5uE, 0.5M NaCl

HLLS

HLMS

HLHS

S.GR

+[HLMS « HLHS]
J[LLLS « HLLS]

- 02
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Dynamic cultures 1:

nitrate limitation
LS —

- lipid “trigger” only in
high PAR, high Nacl ~ LLMS —
(+100% increase in TAG)

- carotenoid enrichment HS -
in all conditions
LS —
- cell count diminished
in all conditions
(up to -50%) HLMS —
HS —
[count] x [volume] x [lipid] =
1.5x control

)
c
>
o
&

volume
[ChIA]
[Protein]
[Lipid]
stability

(but only for high PAR, high NaCl)

[Carotenoid]



Dynamic cultures 2: osmo-stress

(+ block of stretch-activated Ca?* channels)

Cell size Cell stability [ChlA+B]/cell
275 uE 50 uE 275 uE 50 uE 275 uE 50 uE
Control Gd3+ Control Gd3+ - Control Gd3+ Control Gd3+ 1 Control Gd3+ Control Gd3+

LS — MS - os LS — MS -

HS — LS — " HS — LS -

HS — MS — 2 HS — MS —

08

Cell count [carotenoid]/cell [lipid]/cell
275 uE 50 LUE 275 uE 50 uE 275 uE 50 uE
Control Gof3* Control Gds* ; Control Ggf3* Control Gds* 1 Control Gd3* Control G
“ LS— HS - " LS— Hs-
nig LS — MS — 2 LS— MS -
” HS — LS — “ HS — LS|

0z HS — MS — 08 HS — MS —




Challenge:

Find conditions for maximum total lipid (lipid X biomass)
using a 2-stage growth model.

Top 2 Strategies:

1) steady-state growth at high PAR, 2.0M NaCl followed
by short-term environmental stress with low nitrate:
+44% lipid

2) steady-state growth at high PAR, 2.0M NaCl followed
by short-term environmental stress with 0.5M NacCl.
+31% lipid



Photo-Osmotic Duality: is there a mechanism for direct
Involvement of carotenoids in the osmotic shock response?

2.5M NacCl 1.5M NaCl 0.5 M NacCl
275 UE |3 control
y HS->LS
LS->HS
% T TTTT
053 i i)
= FEC-A
50 l'lE d : I TTT1 | | I T T T 111
. iy i A
FSC-A
% T TTTITI T T TTTTIIT I I T TTTTIT T T TTTIII I % S
i i T ] ol T w33 2l a0 g0 -2
FSC-A ‘ FSC-A ‘ FEC-A

DPA block of carotenoid biosynthesis induces morphological symptom
of osmotic shock in elevated salt conditions

Polyakov NE, Focsan AL, Bowman MK, Kispert LD (2010) Free radical formation in novel carotenoid metal ion complexes of astaxanthin
J. Phys. Chem. B. 114(50):16968-77.




Carotenoids: hydroxylated?
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Conclusions

* Rigorous methods and visualization tools for
comparing and optimizing multiple parameters in
steady-state and dynamic cultures

* Isolation of biomarkers for physiological responses
and corresponding yields of algal bio-products

* Predict multi-stage growth condition for maximum
lipid production in Dunaliella salina

 Show evidence for active role of (hydroxy?)
carotenoids in calcium-mediated osmo-regulation
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SNL’s Spectroscopic Capabilities

Raw Spectral Data
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Gene expression,

\ proteins accumulation
—_—r |
Start within12-24 h |

Gene expression
—

Electrogenic NADPH-driven
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Na-ATPase

Na*
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antiporter
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Widely varying analysis indicates there is not consensus on the

echno-economic feasibility of algal biofuels.

PER GALLON Triglyceride Production Cost
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Average = $109 USD/gal

Variability is wide, Std. Dev. = $301 USD/gal



Algae has many advantages over corn,
cellulosic materials, and other crops as an
alternative to petroleum-based fuels.
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Will not compete with agricultural lands for food and
feed production.

Will reduce deforestation area (Science, 2008).
Avoids fresh water depletion.

Produces higher energy content fuels.

Uses CO..
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